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ABSTRACT

Tracking a maneuvering acoustic source using multipath (MP) arrivals in an

inhomogeneous (IH) ocean medium is investigated. Errors introduced by a horizon-

tally stratified sound speed profile are quantitatively evaluated. A new method of

converting MP time difference of arrivals to depth and range which accounts for the

IH effect is developed and evaluated. A 3-D target tracker previously used in MP

tracking is modified in order to remove estimation biases and improve computa-

tional efficiency. Tracking performance is demonstrated using extensive simulation

and shown to be greatly improved.
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I. INTRODUCTION

A. BACKGROUND - PASSIVE TARGET TRACKING

Passive tracking is based on reception and analysis of signals emitted from

a target at an unknown time and location. Range measurement to the target,

usually based on knowledge of the travel time and speed of the signal, is not

possible. The lack of range information makes the tracking of targets, which are

free to change their range, a challenge. Our interest in passive target tracking is

primarily for acoustic tracking of targets in the ocean. However, the problem of

passive localization is encountered in fields like radio astronomy and seismology as

well as in passive sonar. Several passive tracking techniques have evolved over the

years; some of these will be briefly reviewed here.

1. T.M.A - Target Motion Analysis

Target motion analysis is a range estimation technique devised for World

War II submarines. Typical targets were surface ships and the measurements

were primarily sonar bearing. Occasional course and speed estimates derived from

periscope peeks were used as well, but mainly for initialization. The method is

based on hypothesizing constant course and speed targets. The range of the tar-

get whose trajectory would have produced bearing measurements which best fit

the actually observed bearing data is selected as the estimate. The observability

problem is partially solved by maneuvering the observing platform while assuming

the target maintains its course and speed. Own ship maneuvering is a lengthy

operation and the assumption is that the target maintains course and speed only

of limited validity. The important points to note about TMA are:
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• No direct or indirect measurement of range.

• Range estimates limited to nonmaneuvering targets.

• Lengthy own ship maneuver requirement.

• Lengthy solution development time.

• Very accurate bearing measurements needed.

2. Wavefront Curvature

Wavefront curvature is an indirect range measurement technique. It is

based on the assumption that the acoustic waves propagate in spherical wavefronts.

Signals from an array of at least three spatially separated receivers are delayed in

time to affect focusing . The amount of delay, which is the travel time difference

of arrival (TDOA) required for a given array length, is then translated into target

range. The performance depends on the length of the array baseline, the precision

of both the sensor location along the array and the time delay measurements.

A number of implementations exist with array baselines varying from a

few tens of meters in integrated systems, to hundreds of meters in large multi-

platform distributed configurations. The range measurement, which is indepen-

dent, can however be further combined with other measurements like target bear-

ing or Doppler in order to reduce the ranging error. The important features of this

method are:

• Truly independent measurement of range.

• Requirement for multiple sensors precisely located over a large baseline.

• Applicability to maneuvering targets.

3. Multipath Tracking

Multipath (MP) tracking is similar in principle to wavefront curvature.

Here travel time differences to a single receiver via different paths, are measured

26
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using autocorrelation techniques. The paths most commonly used are the direct

path and those reflected from the surface and bottom of the ocean. The reflected

paths can be viewed as paths to imaginary virtual receivers in mirror image lo-

cations, one above the water and the other below the bottom. In this sense, the

single receiver acts like an array of three receivers (see Section C.2).

As in the wavefront methods, the travel time differences depend on the

target's depth and range and on the array baseline, here determined by the water

column. If propagation is assumed to be along straight lines, the inverse dependence

of target position on travel time differences is relatively simple. It provides a

mapping of time delays to range and depth. The range and depth observations

thus obtained can again be combined with other available target measurements in

order to reduce the error. The main features of multipath tracking are therefore:

• Independent measurement of range and depth.

• Compact single receiver configuration.

• Applicability to maneuvering targets.

• Dependence on ocean propagation conditions.

The MP method has enjoyed a growing amount of attention in recent years

due to the advantages stated above and the continued improvement in time delay

estimation. Compensating for the dependence of the method on ocean conditions

is the main subject of this work.

B. THE BASIC MULTIPATH METHOD

1. The Travel Time Differences

The acoustic medium of the ocean is confined between the distinct surface

and bottom boundaries. The medium thus provides multiple reflective paths along

which sound can travel between two given points. The sound travel time along
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those different paths will differ by an amount dependent in a known manner on

the geometry of the scenario.

Consider the direct and single reflection paths shown in Fig. 1.1, under

the following assumptions:

Fig. 1.1 Multipath propagation.

A. The sound propagates along straight lines.

B. The bottom and surface are ideal rigid and pressure release boundaries, re-

spectively.

C. The travel time differences can be analyzed, resolved, and associated with the

corresponding paths.

The following relations then exist between the target depth D and range R position,

measured relative to the observer, and the travel time differences T\ and r2 :
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and

r, = T, - To = - • [(R2 + D2 +W2 - 4D D)
1/2 -

p]
(1.1a)

r2 = T2 -To =
^ [(R2 +D2 +4(DW - D

)

2 - 4(DW - D )D)
1/2 - p\(l.lb)

Where To,Ti,T2 axe the travel times of the direct, surface, and bottom paths,

respectively; Dw is the water depth ( surface to bottom); D is the observer depth

(surface to observer); p is the slant range given by (R2 + Z)
2
)

1 /2 and C is the speed

of sound. These relation can be inverted to express the slant range, the depth and

the range as functions of the travel time differences. The results are

_ 4 [(Dw - Dp) • D2 + Dp(Dw - Do)2
]
- C2T2 Dp + T2(DW - JP )

P ~
2CIT1 (DW -D ) + T2D ]

[1 'Za)

D =
4(A,-S )

'

[C2T
'
+ 2CT2P ~ 4{Dw ~ Do)2

^
(1 '26)

and

R = (p
2 -D2

)

1/2
. (1.2c)

Eq. (1.1) and Eq. (1.2), referred to in this work as the direct and inverse functions

respectively, were derived by Hassab in Ref. 1.

2. Time Delay Estimation

The signal y'(t) at the receiver is modeled as a sum of replicas of the

original signal x(r), each multiplied by the path gain a^, and time shifted by the

path travel time T,, that is,

N
y'(r) = ^a i

- a:(t-T
l ) (1.3)

i=0
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The signal y(t), which is the signal y'(t) time shifted by the travel time of the first

arrival To, that is,

y(r) = y'(*-T ) (1.4)

can be expressed in terms of the TDOAs r, as

N N
y(t) = £«<*(* - T - Ti) = £«**(* - t{ ) (1.5)

i=0 i=0

where rt
- = Ti — To. If the source of the target's acoustic emission is propeller

cavitation noise, as is the case for broadband MP, then the original signal x(t) is

a broadband random process. The autocorrelation of its received version y(t) will

exhibit peaks at time lags equal to tj. The autocorrelation can be easily computed

at discrete time lags using a sampled version of the received signal. As long as

the ACF peaks are resolvable, they can be interpolated between the discrete lags

providing the required continuous time delay measurement. The measured delays

can be further smoothed using a time delay tracker.

In the narrowband case, low frequency tonals emitted by target machinery

can be received at long range. Since the autocorrelation function of such sinusoids is

periodic, the ACF approach is impractical. A different approach has been applied

to this situation which is based on standing waves generated by the tonals in

the water column. The sound field intensity is sensed by a number of receivers

placed along a vertical array. A technique called field matching is used to select a

target position which will give rise to a sound field that best matches the measured

intensity. The effort in this work concentrates on the broadband case.

3. Target Tracking

The MP depth and range measurements are contaminated with noise.

Sources of the noise include acoustical noise which distorts the autocorrelation
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of the received signal, errors and fluctuations of the MP conditions in the ocean,

and errors in the receiver and signal processor. To estimate the actual position

from the noisy measurements, a target tracker is employed. The tracker fits the

measurements with an estimate that, on the average, minimizes the squared error

between the actual and estimated position. Such a tracker, also referred to as

an estimator, observer, or filter, may also use other available measurements like

bearing and Doppler.

Many trackers of the type described above are available. These range

from simple averaging trackers to large banks of Kalman filters. The trackers differ

primarily in the measurements they use and the complexity of the assumed target

model.

A typical complete MP measurement and tracking system is shown in

Fig. 1.2. Estimated TDOAs are converted to depth and range by the prefilter.

Depth and range are then combined with bearing to form a 3-D target position

measurement which is filtered by the target tracker.

Current MP tracking methodology is lacking in the following areas:

• The methods assume straight line propagation which is true only in a homoge-

neous medium. This assumption is largely in error for the realistic inhomoge-

neous (IH) case. This causes large errors in the transformation of time delays

to depth and range.

• The assumption that path and delays are easily associable is wrong for many
practical cases. A significant amount of detailed oceanographic data is re-

quired in order to identify the multiple paths. This information is not typically

available in an actual target tracking situation.

• Receiver time delay resolution is not perfect but limited by the bandwidth

of the signal and the receiver. This affects the performance whenever the

geometry yields two or more multipaths with similar travel times. Three such

typical geometries are :
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Fig. 1.2. MP tracking system.

o Long range, where all paths tend to be of same length.

o Target or observer close to the surface or bottom where the direct path

and the reflected path have similar length.

o Target and observer at symmetrically opposing depths such that the bot-

tom and surface paths have similar travel times.

• The lack of exact knowledge of bottom depth and structure limits both the

time delay measurement and the exact translation to depth and range.

• Other effects including slanted bottom, and the anisotropic nature of the bot-

tom which may have different slopes at different directions.

Our work seeks to address some of these effects, in particular the first

three.
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C. REVIEW OF PAST WORK
1. MP Target Tracking

a. Hassab

In 1976 Hassab published an original work titled "Passive tracking of

moving source by a single observer in shallow water" [Ref. 1] which was the starting

point for the research in the area. In this work, the use of measured travel time

differences as inputs to a target tracking filter was established. The tracker was

realized in cartesian coordinates using an extended Kalman filter and assuming a

nonmaneuvering target. Earlier work by Hassab [Ref. 2] dealt with the very process

of measuring the travel time differences using a technique based on the cepstrum.

b. Singer

In the early T.M.A algorithm the development of a range solution was

halted when a target maneuver was detected (a "Zig Zag" in World War II jargon).

The maneuvers were detected when constant tracking errors indicated a mismatch

between the actual target and its model. With the application of Kalman filters

to target tracking, the maneuvering command uncertainty was represented as a

white gaussian process noise. Singer [3] improved the model by coloring (low pass

filtering) the command noise to correspond to the expected maneuver dynamics.

c. Moose

In the 1970's multiple model (multiple hypothesis) methods were in-

troduced [4] to address the maneuvering problem. Here a number of target models

based on different hypothesized maneuvers are computed in parallel, and combined

in a Bayesian manner to form the overall estimate.

This approach was applied to both airborne and underwater targets by

Moose [5,11] and his colleagues McCabe [6], Gholson [7], Van Landingham [8], Dai-

ley [9], and Caputi [10]. Three main issues related to MP tracking were addressed
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in this work, which is ongoing; They are the selection of a particular coordinate

system, the account for target maneuver, and the bias associated with the nonlin-

ear transformation of TDOAs to depth and range. Performance evaluations were

carried out in Moose's work but both the simulation and tracking were done with-

out taking account for the effects of the IH acoustic medium and the realistic delay

estimation process.

2. Time Delay Estimation and Source Localization.

The area of time delay estimation has received enormous attention in the

last twenty years. Among the contributors are Schultheiss [13], Ianniello [14], Wien-

stien [15], Friedlander [16, 17], and others. Work in this area covered the topics

of estimation instrumentation, theoretical and experimental error bounds, estima-

tion resolution, continuous delay reconstruction from sampled time sequences, and

more. A very good summary is presented in Refs. 15 and 16.

Use of TDOA for source localization was investigated by Schultheiss for a

variety of receiving array configurations. In his work [18] lower bounds on achiev-

able error using bandlimited signals is developed using the Cramer Rao lower bound

(CRLB) and Ziv Zakai lower bound (ZZLB). In the Ph.D. dissertation by his stu-

dent Hamilton [19] the lower bound for the MP localization error variance is also

developed. Hamilton also establishes the relation between the wavefront curvature

and the multipath ranging using reflected mirror images of the receiver.

3. Acoustic Propagation and Modeling

The basic form of sound propagation in an inhomogeneous medium where

the speed of sound is a function of depth has long been known. The development

of the associated approximations and the resulting ray acoustics are presented, for

example, in Ref. 20 by Ziomek.
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Numerous computer models have been developed to compute sound prop-

agation in the ocean based on ray acoustics, starting from analog computer sim-

ulations which were used for ray tracing, and proceeding up to very large and

sophisticated numerical models which account for many of the special effects of

the ocean medium. A classic model in this category is the Generic Sonar Model

developed by Weinberg [21].

Only a few models address the problem of finding the rays traveling be-

tween two given end points, the eigenray problem. A recent model of this kind is

SMART (SMall Acoustic Ray Tracer) developed by Novick [22].

Research on the nature of reflection from the bottom and the surface of

the ocean also dates back to World War II. Contributors in this field include, for

example, Clay and Medwin [23]. Recent work in this area reveals the interrela-

tionship between the various oceanographic processes, for example, internal waves,

surface interaction of the ocean and the atmosphere, and shear waves induced in

the bottom of the ocean by a sound field. The limitation of simplified partial,

lumped models for these phenomena is becoming apparent.

D. PROBLEM STATEMENT

This thesis research seeks to address the following issues:

• To account for the complex effects of the inhomogeneous (vertically stratified)

ocean medium on broadband MP tracking.

• To investigate the impact and account for the effects of a realistic receiver and
time delay estimator on the overall tracking process.

In addition our work includes:

• Modification of the state of the art target tracking algorithm to decrease some
of its estimation bias.
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• Evaluation of the complete tracking algorithm using a realistic environment,

and target simulation considering all main sources of estimation errors.

The main contributions and key discussions of each of the foregoing issues are given

below.

1. The Inhomogeneous Ocean Medium

The real ocean is acoustically inhomogeneous , in that among other effects,

the speed of sound varies with depth. This variation significantly effects the MP

propagation and travel time as shown in Fig. 1.3 where the receiver (Rx) is at

range = 0. Note that the direct path between the source and the receiver is com-

pletely eliminated due to the ray bending in Fig. 1.3b (an exhaustive search for the

eigen rays was conducted for this plot and the resultant eigenrays are plotted). The

effects, believed to be analyzed quantitatively here for the first time, are shown to

render the assumption of straight line propagation to be of limited practical use.

Accounting for this effect is difficult since the inverse function, which transforms

travel time differences to depth and range is not readily computable by existing

acoustic models. Devising an inversion method to account for the IE effects on the

MP tracking is a main goal of this research.

The acoustic energy attenuates as it propagates through the water, and

many factors contribute to this loss including spreading, absorption, and reflec-

tion. While these loses and their impact on the time delay estimation noise axe

relatively well understood, they were nevertheless never considered in past simula-

tions. Inclusion of the reflection and spreading effects to increase the reliability of

the simulation is another part of the effort to better account for the effects of the

medium.
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Fig. 1.3. IH MP propagation, a. with direct path, b. without direct path.
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2. Realistic Receiver and Delay Estimation

a. Limited Resolution

The finite bandwidth of the target signal and receiver limit the time

delay resolution to a few tenths of a millisecond. A significant amount of this

research was dedicated to prediction and improvement of this limitation but less

work was aimed at investigating the details of its impact on MP tracking. The

effect of this limited resolution on the MP tracker and the means to overcome it

are another subject addressed by this research.

b. Nonidentifiable Paths

The polarity of the ACF can support association of the time delays

with their corresponding paths when the MP structure is known to be simple.

However, when the structure is complex and/or unknown, such as in cases where

there is a lack of direct path due to ray beading, the simple association is not

possible. The ability to associate delay with paths, assumed in previous work, is

not assumed here.

c. Nonnegative Noise

The even symmetry of the autocorrelation function does not enable

the measurement of time delay polarity. In the multipath situation, there is a first

arrival followed by lagging replicas. This justifies the use of the positive time delays

only. The implication is that the delay noise is not normally distributed as was

assumed in the past. A distribution which is zero *br negative delay is a better

description and it leads to a nonzero delay estimation bias error.

3. Tracker Modification

In the maneuvering target tracker introduced by Moose, the conditional

mean of some hypotheses commands is used as the estimate. This estimate is

biased if the hypotheses commands are not symmetrically centered around the
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actual value. Removing this bias is difficult since modification of the hypotheses

disrupts a recursion used in the estimation process. Modification of the tracker to

remove the bias without disrupting the recursion or introducing large estimation

transients is one of the goals of the research.

4. Evaluation

Many elements are involved in MP tracking, namely

• The target and its dynamics.

• The medium and its multipath structure.

• The receiver and the time delay analyzer.

• The conversion from time delays to position measurement.

• The actual acquisition and tracking of a maneuvering target.

Evaluation of the system performance is done in two steps. First, each and

every component is evaluated separately. This is done under simulated conditions,

which are determined for each component based on the analysis of the overall

system operation. Then and only then, the integrated system is evaluated, using

the results of the individual component evaluation as 'reference data'.

E. SCOPE AND OUTLINE

This work approaches the MP tracking as a system problem. The remaining

chapters are as follows.

Chapter Two deals with the 3-D target tracker. A state-of-the-art tracker

is described. An idealized receiver delay analyzer and homogeneous straight line

propagation are assumed. The algorithm provides a good starting point in terms

of its treatment of a 3-D maneuvering target. New interpretation and analysis is

provided for certain aspects of the estimation mechanism, leading to a modification

and improvement . A systems approach, not used in previous work, is applied to
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evaluate the performance of the modified tracker. Some of the parameters and

algorithms used for the simulation are not discussed in detail here, since they

result from the removal of the above idealized assumptions which is explained in

Chapter Three.

Chapter Three addresses the main source of tracking error, namely the IH

medium together with the effects of a realistic receiver and delay analyzer. The

nature of the problem is described and the proposed solution is discussed in detail.

The performance of the method is then evaluated and analyzed in detail.

Chapter Four presents a detailed evaluation and analysis of the performance

of the new inversion prefilter.

Chapter Five resumes the overall system performance analysis, this time with-

out idealized assumptions and using the new inversion algorithm and the improved

tracker.

The work is summarized in Chapter Six where conclusions and recommended

extensions are presented.
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n. THREE DIMENSIONAL MANEUVERING TARGET TRACKER

A. INTRODUCTION

The three dimensional (3-D) target tracker developed in this chapter is based

on a state-of-the-art design by Moose, and McCabe. The modified Kalman filter

which forms the central portion of the tracker was recently investigated by Saez

[Ref. 24], in conjunction with this study. In his work, Saez includes a detailed

review of the tracker, results of which are briefly repeated here for completeness

and to establish notation.

The emphasis in this section is on improvements of the tracker design and a

new overall systems approach to the performance evaluation. The modifications in-

clude an adaptive, instead of a fixed, command hypothesis bank and an advancing

smoother. Both modifications are intended to reduce tracking biases. The investi-

gation also includes the use of a second instead of a third order target model. This

was found to reduce computational load without sacrificing estimation accuracy.

A realistic new model for the time delay estimation noise is used in evaluating

the performance. The model incorporates propagation effects as well the effects

of some inaccuracies in the time delay estimation. This enables a more realistic

evaluation of the overall performance for the homogeneous case, which will be

extended in Chapters Three through Five to the IH case.

A range and bearing coordinate decoupling approximation was introduced in

the original tracker by McCabe [Ref. 6] to linearize the model. An interesting

interpretation of this procedure provides an explanation for errors in tracking non-

maneuvering targets that occur at short ranges.
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B. TARGET DESCRIPTION

1. Horizontal Plane

A second order physical model is used to describe target motion in the X

and Y directions of the horizontal plane. Controlling the motion is a command

which forms the third degree of freedom in each axis. If Th(t) is the command

thrust in Newtons (N) and Dc is the drag in [N per m/sec] the differential equation

for each axis which follows from Newton's second law is

Th(t) - Dcx(t) = mx(t). (2.1)

This equation can be rewritten as

x(t) = -a(U{t)-x(t)) (2.2)

where a — Dc/m [sec
-1

] is the reciprocal of the system's damping time constant,

and U = Th(t)/Dc [m/sec] is the speed command, i.e., the speed at which the plat-

form will move when steady state is reached. If it is assumed that X(0) = X(0) =

and that the command is a constant U then the solution is :

x(t) = U(l - e~
at

) (2.3)

x (t) = u(t+±-{e- Qt -l)\ (2.4)

2. Depth

Because of the reduced dynamics expected for underwater targets in the

depth channel, the target's motion in depth was modeled as a first order system.

The command Ud [m] can therefore be represented in terms of the steady state

depth, and the differential equation along the depth axis is

D(t) = a d (Ud -D(t)). (2.5)
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The solution of Eq.(2.5) is given by

D(t) = Dio)e"
ait + Ud -{\- e-*-') . (2.6)

3. Command Noise Augmentation

Eq. (2.2) describes target motion in response to a known control U. How-

ever the control (command) is not known to the observer, especially if the target is

maneuvering. Singer partially accounts, for this by adding a colored noise compo-

nent w' to the command. This noise w' is modeled by a first order recursive filter

driven by a normally distributed white noise input w.

w[
t)
= -aww'(t) + w(t) (2.7)

The lowpass model was chosen since it represents a maneuver which typically takes

at least a few seconds to complete. The command is thus modeled in the ob-

server by the sum of an assumed command U and the random noise ty', that is,

Uobserver — U + w'(t). This description suggests estimation of the command U by

the multi-model (MM) estimator described in Section C.

In order to maintain a complete system state description, the coloring

LP filter and its state w' are combined into the target state equations. Both the

command U and the the noise w are represented in units of the resulting steady

state speed. The differential equations are then represented in discrete form by the

following set of (3-D) Cartesian motion difference equations.

Xn = £Xn_i + TUX + *wz n_i (2.8a)

Yn = Yn^Yn_! + H7,, + *wy n_! (2.86)

Dn = ad £„_! + (1 - ad )Ud (2.8c)
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where

X = (x x w'x )

Y = (y y w'
9)

and the components of the matrices <f>,
T, ¥ are detailed in Appendix A, and

ad = e~QdT . Note that since the equations are linear and decoupled, a change

in target course at a constant speed is modeled here as an acceleration along one

axis and a deceleration along another.

4. Cylindrical Coordinate Observations

Most surveillance and tracking sensors produce measurements relative to

their tsau position and orientation. The same is true in the MP case, where range

and depth are indirectly deduced from the travel time differences across the vertical

plane. Bearing is measured by beamforming; here sonar azimuthal beams are

formed using travel time differences across the horizontal plane. Thus, the natural

measurements are in the cylindrical coordinate system of range, depth and bearing.

These are relative to the observing sensor Arhich is therefore set at the origin. The

detailed set of variables used to describe the positions of the observer and the target

in the ocean is shown in Fig. 2.1 and denned in Table 2.1.

TABLE 2.1

CYLINDRICAL COORDINATES VARIABLES

Do Observer depth measured from surface.

Dw Depth of the water.

D Depth of target relative to observer.

R Horizontal range of target relative to observer.

B Bearing (azimuthal target angle relative to north).

B Bearing rate.

Ur Speed command in range direction.

Ub Speed command in cross range direction.

Ud Depth position command.
U'd Depth speed a d(Ud - D)

p Slant range.
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Fig. 2.1 Cylindrical coordinates.
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5. Linearization and Decoupling

In order to use the cylindrical measurements as observations for the Carte-

sian target model of Eq. (2.8), the measurements have to be transformed. This

leads to a coupled, nonlinear observer. Two possible approaches have beeu applied

to this problem in the past. One is based on conversion and linearization of the

measurements, and leads to the extended Kalman filter, (EKF). This approach was

applied to MP tracking by Hassab [1]. The other was introduced by Moose [5] and

is based on a decoupling and linearization of the state equations, using discretized

approximations.

Investigation of the two approaches [7] indicated a preference for the second

since taking account of target maneuvers in the EKF seemed to require a very large

computational load. The second approach, developed in detail by McCabe in [6],

is based on the following main steps.

The Cartesian target state description is transformed to cylindrical coor-

dinates using the transformation:

i2=(x 2 +y 2

)

1/2
(2.9a)

B = tan" 1
(y/x) (2.96)

D = D. (2.9c)

In the bearing channel, the range is assumed constant for the duration of

the sampling period. The speed maneuver commands Ux and Uy along the X and

Y directions are replaced by commands along the range and cross range (bearing)

coordinates Ur and Ub respectively.

Range and bearing coordinate coupling is thus reduced to a parametric

relation. This requires the bearing channel matrices to be recomputed only when
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the range changes by more then some given ratio and no more then once per

iteration. The resulting state equations are

Dn = adDn- X + (1 - ad ) Udn- X (2.10a)

Rn = ^rR„_i + TrUr n-1 + *RW r (2.106)

Bn = ^6Bn_! + rfr^ n_! + * bwb (2.10c)

where

K = (RRw'ry (2.11)

and

B = (BBw
hy. (2.12)

Each channel of the three decoupled channels (depth, range, bearing) is observed

by a scalar z defined as

Zdn=dn + v
\
n (2.13a)

zrn =Rn + vrn (2.136)

Zbn=Bn +Vbn (2.13c)

where v<i, vr , and vb are the observation noises. The components
<f> h Tb ^i b of

the cross range matrices are range dependent and presented in Appendix A. The

subtle terminology - preference of the term "cross range" to "bearing" - used by

McCabe, is significant. It is indicative of the fact that while the bearing variable

is used, a constant cross range rate motion is actually being modeled as the basic

nonmaneuvering case. The command U\> is a speed command in the cross range

direction and not a bearing rate command. While the former is a constant, the
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latter is range-dependent. Similarly the range rate command Ur reflects an as-

sumed constant range rate for the nonmaneuvering case. This again is an incorrect

assumption for a target moving along any straight line other than the line of sight.

The impact of these assumptions will become more apparent in the next section.

C. MULTI-MODEL ESTIMATION

1. Concept

Use of the classic Kalman filter as an observer for a maneuvering target

is possible only if provision is made for the unknown maneuver command. The

method suggested by Sin^e* does not suffice in itself since it dictates maintaining

high Kalman gain; this inhibits effective measurement noise filtration.

A better procedure is known as the Multi-Model (MM) [43] and was first

applied to the MP tracking problem by Moose. In the MM a number (N) of

commands are hypothesized to form a command bank vector UI defined as:

UI = (U1 ,U2 ...UN ). (2.14a)

The bank is ideally centered around the mean command value and the commands

in the bank are evenly spread to span the full range of possible commands. A

corresponding bank of Kalman filters (models) is formed and each filter in the

bank separately tracks the target using its particular hypothesized command and

the common measurement Z. The estimated states X, from all the filters in the

bank are combined to form a conditional mean which is used as the overall estima-

tor output. The conditional mean depends on the discrete command probability

distribution represented by the weight vector W defined as

W = (W
l
W2 ...WN )

T
(2.146)
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where the weight W{ is the conditional probability (weight) that a command U{ was

exercised in the previous time period given all past observations zn . The expression

for the estimated state X is Yli=i XjWj-.

The discrete distribution of W can be computed recursively if the com-

mand is modeled as a semi-markov process with a known probability transition

matrix 9. The conditional probability of each command, given the past position

measurements and the hypothesis, is computable using the Kalman filter's error

propagation matrix P. A diagonal matrix A with elements a[z, i] set proportional

to the conditional probability of the innovation given the hypothesis i is also used

in the recursion which is given below. An overall block diagram of the resulting

estimator is shown on Fig. 2.2. The development of the basic estimator is reviewed

in detail in Ref. 24 and will not be repeated here except for the resulting estimator

equations. Emphasis in the following sections will be directed towards the more

recent evaluation and modification of the algorithm and to its application to the

IH multipath tracking problem.

2. The Multi-Model Estimator Equations

The equations are written in a generic form for a 3 x 1 state vector X

representing either range R or bearing B. The specific state vectors, observation

scalars and the corresponding matrices can be substituted to develop either the

range or bearing equations. The depth is estimated by means of a first order

smoother (similar to Eq. (2.10a). The variables and their definitions are given in

Table 2.2.
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TABLE 2.2

MM VARIABLE DEFINITIONS

<f>
3x3 state transition matrix.

r 3x1 control gain vector.

ty 3x1 Singer process noise gain vector.

H 3x1 observation matrix H = [1,0,0].

G 3x1 Kalman gain matrix.
x
X

to'
at time n.Xn 3x1 state vector X =

Xj m|n 2
3x1 estimate of filter i in the bank at time ri\

given past observations Z\ , Zi .

.

. z„2

z The observation scalar.

N Number of models in the bank.

N 1 x N a vector of l's.

XI 3 x N state bank matrix. Xl[i j] is the i- th component
of the state vector Xj of the j-th model,

i.e., XI = [Xi |X2 1
• -|Xjv]. The matrix is time

index like Xj above.

U{ The assumed command of the i
th

filter in the bank.

UI 1 x N command bank, evenly spanning the Um i n — Umax
interval of allowable commands, UI = [U\ , U2 , . . . Un].

Umin Minimum command in the bank.

Umax Maximum command in the bank.

U3 Command bank separation Umax — Um in .

AU lxl command bank step size UI[2] — UI[1].

Uc Center of command bank {Umax — Umin)/2>
v lxl zero mean gaussian measurement noise v ~ iV(0,cr^).

av lxl measurement noise standard deviation.

w lxl Singer white process noise input.

<7j lxl standard deviation of the conditional innovation

distribution given the hypothesis.

au Standard deviation of the command quantization error.

D u 3x3 command quantization error matrix.

W N x 1 hypothesis command probability (weight) vector.

W = [W1 W2 ...WN ]

N x N command Markov probability transition matrix, Qu,j]

- the probability that command j will change to command i in one step.

0\i,j] = \ i tJ r* \ • ~~t • \ where Pr is the probability of

unchanging command.
A N x N conditional innovation probability matrix.

Xop , Uop ,Wop Smoothed output of the estimates X, U,W
a Smoothing coefficient
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The estimation equations are presented in the order of their use in the

recursion. The Kalman filter equations are

xiB|w_, = 4 • xi^!,.., + r ui (2.15)

P»|„-l = *Pn-l|n-l*
T + D u + **l*

T
(2.16)

Gn = Pn^-iH7 [HP^^jH
7,
+ a\] (2.17)

PB|B = [I-GnH]Pn
,
ll-1 (2.18)

XIn|n = XIn
|
n_! + Gn (zn N - H • XIn

|

n_!) (2.19)

Note that the state of the multiple-model XI is the 3 x N state bank matrix whose

columns represent the states of the individual filters in the bank. The corresponding

command UI is an N X 1 row vector which represents the entire command bank.

D u is the command quantization error matrix and is computed once as

At/2 td u = r^-rT
. (2.20)

Since Eq.(2.15) through (2.19) are common to all the filters, the classical single

channel Kalman gain vector Gn can be computed once and used for all the filters.

The adaptive command estimation equations are

a5 n =HP n
|
n_ 1
HT + ^ (2.21)

r -(,n .N-H-XI[M)V2^ j -1

AM. -
(

o

if.}
(2-22)

W'n = [NA« W^f 1 AtfW^ (2.23a)

Wn = a.WB_, + (1 - aw )W'n (2.236)
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where the vector of conditional command probability W is recursively computed.

The conditional command probability W is then used to compute the conditional

mean estimates X and U of the state and command banks XI and UI respectively.

Un = UI wn

Xn = XIn wn

(2.24)

(2.25)

Additional first order smoothing is applied to the MM estimate in the form of

(Xop )n = aI(Xop )„_ 1 + (1 - ar)Xn

(Uop)n = au(Uop )n-i + (1 - au )Un

(Wop )n = a.fW,,),.! + (1 - a„)W,

(2.26)

(2.27)

(2.28)

where the subscript op stands for "output".

A high initial Kalman gain is insured by setting the initial conditions as

follows:

for i = 1,2, ...N

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

XIo|o[M = z

XI |o[2,t = y(«l -zo)

XI |o[3,2 1

=

Po|o[l,l = a\ x 10

Po|o[2,2;
-°1

7*2

Po|o[l,2] = Po|o[2,l] =

Po|o[l,3 = Po|o[3,l] =

Po|o[3,3; =

w = ^[l,l,...l]

10 x oj

T
10<7

2

J>2
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3. Estimation Factors

Some factors in the estimation process emerged as dominant when the

observer performance was evaluated over a variety of conditions. These factors are

reviewed in this section.

a. Hypothesized Commands

The use of a conditional mean between the set of hypothesized com-

mand parameters in the estimator leads to the dependence of the estimate on

the validity and accuracy of the hypotheses and the nature (distribution) of the

measurement noise. This effect can be demonstrated by the following simplified

example. Consider an unknown scalar parameter U which is to be estimated from

a single observation z = U + n where n is a random variable with zero mean normal

distribution n ~ (0,cr
2
). If one assumes a discrete model for U with two equally

likely possible hypotheses Ul and U2 and U2 > U\, then the Bayes mean-square

estimate is given by the conditional mean

U = E {U\z} = J2ui -Pmz) = J:Ui
-

f{z^ )

f

P{Ui)
(2.38)

,=i i=i U

where / is the probability density function of z. This estimate is shown in

appendix B to yield

77. T TT. 1

(2.39)U = UC + ^tanh
2

'•<—*.)
2<7

2

where Uc and Us are the center and separation of the hypothesis command bank

defined by

* =^ (2.40)

U9 = U2 -Ul . (2.41)
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111—10; U2=10; STD=10
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Fig. 2.3. Conditional mean estimate.

The dependence of the estimates on Uc and Ua and on the noise distribution vari-

ance tr is clearly seen in Eq. (2.39). The function U(z) defined by Eq. (2.39) is

plotted in Fig. 2.3. The bias £ = E lU — U > of the estimator is given by:

-*M tanh El
2d2

(U + n-Uc ) -'} (2.42)

which after rearranging and extracting the constants from the expectation gives

£ = Ue - U + ^E |tanh^-(C7 + n- Uc )\ . (2.43)

Given that Uc — V the conditional bias can be shown to be zero as follows. Sub-

stituting U — Uc into Eq. (2.43) gives the bias as

'-t^MS")} (2.44)
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Since the tanh(:r) function is odd and the density function of n is even, the expec-

tation in Eq. (2.43) is zero.

However the bias is non-zero when Uc ^ U, i.e., when the hypothesis

bank is not centered around the actual value. This can be realized for example by

investigating Fig. 2.3 for values of U larger then U2 or smaller than U\ . If Uc ^ U

then U will be incorrectly estimated with the amount of error depending on the

deviation U — Uc -

This simple analysis which can be extended to the MM case, provides

a new insight into the operation of the MM estimator and its bias. If the command

bank is to cover all possible commands of a target which could move at full speed

both incoming (decreasing range) and outgoing (increasing range), its center should

be set to zero speed. While a choice of Uc = will produce good results when

averaged over all possible target scenarios, it will produce a bias E for every specific

scenario with average command E{U} ^ Uc . As long as the target is moving in

one direction (inward or outward) the center of the hypothesis bank will be very

different from the average command. This will give rise to an estimation bias.

In the example shown in Fig. 2.4 the command U of a target driven by

a true command of 10 m/sec is estimated using a bank of 7 filters evenly spanning

the range —15 to +15 m/sec centered around m/sec. The resulting steady state

command bias is 0.8 m/sec as shown in Fig. 2.4a. The position error resulting

from the command bias is 150 m (Fig. 2.4b).
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Fig. 2.4. Command estimation bias.
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b. Basic State Separation

The dependence o£ the MM performance on the hypotheses separa-

tion warrants some further investigation. The measurement and the evaluation

of the conditional mean are performed in the position x(z) domain. The system

dynamics as represented in the transition matrix and the Kalman filter translate a

hypothesized command to a hypothesized position. In particular, consider a system

Xn = ^Xn_! + TV + *«>«-i (2.45)

with an observation

zn = HXn + vn (2.46)

modeled by

Xn = *Xn_x + TUH + Qwn-t (2.47)

Uh represents the hypothesized constant command here assumed to be different

than the actual constant command U. The observation noise v and process noise w

are both normally distributed with v ~ iV(0, cr^) and w ~ iV(0, a^,). The variables

<f>,
r and H are the transition, control gain, and observation matrices respectively.

The goal is to find the mean steady state deviation S of X from X, i.e.,

£= lim £{x n|n -Xn ) (2.48)

resulting from the mismatch between the model (Uh) and the actual system (U).

The Kalman prediction is

X n
,
n _! =^X n _ 1

|

n _ 1 +r^H (2.49)

and its average is given by

E {*„,„-, }
= <j>E {*^i|,-i } + TU„. (2.50)
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The Kalman estimate Xn i n is

(2.53)

Xn|n =(I-GnH)Xn|n_ 1 +Gn zn (2.51)

which after substitution of Eq. (2.45) and (2.46) becomes

Xn|n = (I - GnH) X^.! + GnH (^Xn_! + TU + ¥u>„-i ) + Gn vn . (2.52)

Taking the expectation of Eq. (2.52) yields

E {Xn)n } = (I - GnH) E {X„|n-i } + GH^E {Xn_! } + GnHTU

+ GW&E {«;«.! } + GnE{vn }

and since E{wn } = E{vn } = Eq. (2.53) becomes

E {Xn
,
n } = (I - GnH) E {Xn|n_ 1 } + GnU<f>E {Xn_ x } + GnUTU. (2.54)

If Eq. (2.50) is substituted into Eq. (2.54) the result is:

E{xn
,
B } = (i-.GftH)(^{xn- 1

,
B- 1 }+rcrH)+GnH(^{xB_ 1}+r^).

(2.55)

Now taking the expectation of both sides of Eq. (2.45) gives

E{Xn } = +E{Xn-i} + TU + *E{wn- 1 } (2.56)

and since E{wn } = 0,

E{Xn } = *E{Xn-i}+TU. (2.57)

Subtracting Eq. (2.57) from Eq. (2.55), rearranging terms and substituting £n

defined as

Sn =E {xn |„
- Xn }

= E {X n
,

n }
- E {Xn } (2.58)
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results in

E {S n } = (I - GnH) <f>E {£ n_! } + (I - GnH) T (UH - U) . (2.59)

At the steady state we can substitute £ = £<x> for both £n and £n-\

as well as G = G^ for G„, in Eq. (2.59) and therefore obtain

S = (I - GH) <f>£ + (I - GH) r(J7H - U) (2.60)

or alternatively

[I - (I - GH) 4]E = (I- GH) T(UH - U). (2.61)

The desired transformation of the speed command hypothesis deviation Uh — U

to the steady state average state deviation is thus found to be

€ = [I - (I - GH)^]" 1
(I - GH)T{UH - U) (2.62)

which has the simple form

£ = F(UH - U) (2.63)

where

F = [I - (I - GH) fl
-1

(I - GH) T. (2.64)

In the MM the hypothesized commands in the bank deviate from the

actual command value. This command deviation translates into the deviation of the

corresponding states from the actual state according to Eq. (2.63). The separation

of the states in the bank is therefore dependent on the command separation, the

system matrices and the steady state Kalman gain.
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The dominance of the Kalman gain in Eq. (2.64) is clearly evident. A

simple scalar example will demonstrate the effect. Consider an attempt to estimate

a slowly varying constant x defined by the model

xn = axn-i + U + tun-i (2.65)

where w is a process noise w ~ N (0,<7^) and a has a positive value close to but

less than 1. The observation is defined by

zn = Hxn + vn (2.66)

where H — 1 and v is the observation noise v ~ N (0,<r£). If the model

xn \n-i - axn- X
\

n-\ +UH + Wn-l (2.67)

is used for the Kalman filter estimate then, the model mismatch Uh — U will give

rise to a steady state position deviation. Substituting ^ = a, T = 1,H = 1 into Eq.

(2.62) gives the steady state position deviation

where g is the positive scalar steady state Kalman gain which depends on the vari-

ances ratio of the process and the measurement noise. The deviation, as indicated

by Eq. (2.68), will vary from a minimum of (for the highest gain case of g = 1)

to a maximum of f_^ ( for the lowest gain case of g = 0).

For the MM the <j>, T, H matrices and the allowable range of maneuver

commands are assumed known. Under such conditions the only control the MM

designer has over the state separation is the Kalman gain. A high gain gives heavy

weight to the new measurement which is common to all the filters; this tends to
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keep the filters states close together since their differences are not emphasized. A

low gain gives higher weight to the different individual channel predictions thus

allowing the states to grow apart. The states diverge until their average innovation

is large enough to compensate via the Kalman gain for the command mismatch.

An example is given in Fig. 2.5a showing the positions of the two

extremes and the center filters in the bank. The Kalman gain (position component)

was G(l) = 0.073 when the position deviation of the first filter was 1.4km. Fig.

2.5b shows a similar case with higher gain G(l) = 0.041. Note that the separation

between the first and center tracks is increased to 2.9Km (note the different scale).

a. G(l)=0.073

l^-l

b.G(l)-0.041

14km

T-XIL..] K

XlL'.O I-

Xll'.»l

mi: [u.n]
8

XIV,"1

ntc (uw)

Fig. 2.5. State position separation.
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In Fig. 2.6 a 3-D plot showing the weight vector W as a function of

time. A sharp and well defined peak (a) leads to a less noisy and overall better

maneuver tracking performance. This is the case if most of the measurements z

(Eq. (2.13)) fall within the interval spanned by the state bank XI, and if the

innovation variance a\ is of the order of the position separation. If many of the

measurements fall outside the interval spanned by XI, as is the case when the gain

is too high, then a less well defined peak is formed. Such a case is shown in Fig.

2.6b where the resulting "hesitation" and noisy nature of the weight vector may

eventually lead to loss of track.

On the basis of the forgoing discussion, it can be seen that in order to

minimize the estimation bias one should take the following actions. First one has

to ensure that the state bank spans the expected spread of position measurements.

This can be done by tuning the Kalman gain. Secondly one should maintain the

center of the hypothesis bank close to the actual command. This can be done by

adaptively relocating the command bank center Uc defined as:

1
N

i=l

around the estimated command value. Adaptive recentering has not been at-

tempted in previous work with the MM tracking filter.

Trimming the Kalman gain, is done by means of an optimized correc-

tion factor D u . Athans and Chang [4] refer to the optimization as "more of an art

then a science." and Ref. 9 attempts to derive an analytical expression for D u *.

* The argument made there is that each model in the bank is subject to an
additional command uncertainty in the interval ±%p around the discrete value.

This is of limited validity since the command uncertainty for every channel is over

the entire interval Umax — Um in . However the Singer noise component which is

added to the D u compensates by maintaining a high enough Kalman gain.
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Fig. 2.6. Weight vector history.

Gain control by means of the D u factor reduces the need for the Singer state com-

ponent w' , which was devised partially for the same purpose. Our approach, which

was found to be more effective is discussed in Section D. Adaptively recentering

the command bank, was a more involved procedure than it seem to be at first. The

method is also described in Section D.
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To complete the discussion Eq. (2.63) is now extended to case of a

complete MM state bank with N channels. Recall from Table 2.2 that the state

bank matrix has the form

XI = [Xi|X2 |...|Xtf] (2.69)

where Xi X2 . . . X# are the state vectors for the individual filters, and that the

command bank vector has the form

UI= [Uu U2t ...UN]
(2.70)

where U\ , U2 , • • • Un are the corresponding commands. The state bank deviation

matrix defined as

SI = [Si , £2 , • • • £n] = [Xi - X,X2 - X, . . . XN - X] (2.71)

is given by

SI = XI - X N (2.72)

where

N = [l,l,...l]. (2.73)

It follows from Eq. (2.63) that the error for the i
th

filter is given by

Si=F(Ui-U) (2.74)

and thus SI is also given by

SI = [F(tfi - U), F(U2 -U),..., F(UN - U)] (2.75)

SI = F(UI - U • N) (2.75)
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namely

XI - X N = F(UI - UN). (2.76)

Now if each control U{ is changed by the same amount AU, then the change in the

entire command bank AUI is AU • N and the new command vector will be given

by UI + AU • N. From Eq. (2.63) the corresponding change in the state bank

matrix is given by

AXI = F • AUI = F • AU • N. (2.77)

The foregoing discussion implies that for an evenly spaced command the state

bank matrix is also evenly spaced along the position "•eed and acceleration axis,

the state spacing AX is given by

AX = F AU. (2.78)

Eq. (2.78) compared very favorably with simulation results (the predicted deviation

was within ±0.01% of the simulation result.) and turned out to be very useful in

ridding the MM tracker from one of its inherent biases ( in Section D).

c. Smoother Order

A first order averager, Eq. (2.26), (2.27), and (2.28) was added to

smooth the filter output in order to reduce the output variance. The price paid for

the smoothing is a tracking lag error for targets of constant speed [9]. This results

from the mismatch between the target model (second order) and the averager (first

order). The steady state error E can be derived using the final value theorem

ico = lim ^—^X(z) (2.79)
t—»1 z

where X(z) is the z transform of x n . Consider the scalar, constant rate target

position x n given by

x n = U • nu(n). (2.80)

66



www.manaraa.com

where u(n) is the unit step function and U is the rate parameter [position units/sample

time T], and a smoothing filter of the form

yn =ay„_i +(l-a)x„. (2.81)

The observation z is here assumed to be noise free so that zn = xn . The

smoothing filter produces a lag error E [position units] defined as

En =yn - xn . (2.82)

whose value at steady state is sought. The analysis in the Z domain proceeds as

follows. Let 'H(z) De the system response and Xts),yfg) be the Z transformations

of xn and yn . Then

X{z) = ^.±[Uo . V(g)] m _^£_ (2.83)

Ht) = If^l (2.84)

E(z) = y(z) - *(z) = (H( 2) - l)X{z) =—- —-. (2.85)

Applying Eq. (2.79) yields the steady state error

jr v
z ~ l aU° aU° v

X /OQ^Eoo = hm — = hm -. (2.86)
z— l z (1 — a)\z — 1) 1 — a z— l z

and the steady state lag error is thus

£oo = t2— • U (2.87)
1 — a

indicating large errors for heavy smoothing (a close to 1).

In the time domain Eq. (2.81) averages the past estimated value

X(n — 1) with the current measurement of x(n). This produces an error even

for the case of no measurement noise since the position x is different at the two

successive time samples. This intuitive understanding of the source of the error led

to the development of the improved advancing smoother discussed in Section D.
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d. Coordinate Linearization and Decoupling

An important aspect of the coordinate decoupling and linearization is

that the target helmsman commands in the decoupled system are attached to a

moving coordinate system, namely the target range and cross range. The drawback

of such a system is that a (nonmaneuvering) target moving with constant velocity

along any straight line other than the line of sight has to be described as maneu-

vering since its range and cross-range speeds are constantly changing. However in

the MM the probability that the command will not change is assumed to be very

high (Pr close to 1).

These two opposing assumptions produce an error which is more pro-

nounced at short ranges where range and cross range accelerations are higher. At

short ranges the normalized range rate (range rate/range) is also large. This im-

plies that there is a need to update the bearing channel transition matrix more

frequently. Under the foregoing condition the advantages of this linearization and

decoupling approach are marginal.

A potential remedy to the coordinate linearization problem may be

to return to an XY Cartesian system or to adaptively modify the probability

transition matrix
<f>

to reflect a predicted linear motion. These ideas were not

pursued further however in order to concentrate effort on the IH effects of the

MP tracking.

e. Measurement Noise

In passive localization, TDOA from the target via different acoustical

paths to separate parts of a sonar array are converted to depth, range and bearing

information. The process is error prone both in the time delay estimation and in

the transformation to target position (range depth bearing). This is one of the

major topics addressed in this research and most of Chapter Three is devoted to
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this problem. However the noise dependence on range affects the evaluation of the

target tracker itself, and so is described briefly here.

The time delay estimation error depends on the signal to noise ratio

(SNR) of the received signal. The SNR in turn depends on the transmission loss

and therefore indirectly on the range. Thus, the delay noise is range dependent*

In addition, the time delay estimation limits the estimated delay to

positive values. An improved noise model is used for the tracker performance

evaluation. This noise model is described in the Section D.

D. IMPROVEMENTS AND MODIFICATION

The following modifications of the tracker were introduced to improve it and

evaluate its performance with respect to the issues discussed in Section C.

• An adaptive instead of a fixed hypothesis bank was incorporated.

• A second instead of a third order system was incorporated in the model. The
second order system was demonstrated as sufficient for the target when the

steady state Kalman gain is adjusted by the correction factor Du (see eq.

(2.16), (2.17), (2.20)).

• A new second order smoothing algorithm was developed and used to replace

the first order smoother.

The modified tracker was than evaluated with

• A more realistic range dependent and nonnegative noise.

• Emphasis on range bearing coordinate decoupling and linearization at short

ranges.

* With this limitation in mind the disadvantage of the coordinate linearization,

discussed above, at short ranges is further emphasized.
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1. Adaptive Command Bank

a. Concept

The problem addressed by this modification is the bias error arising

from a hypotheses bank which is not symmetric around the actual command. A

possible solution to this problem, cited earlier, is to adaptively recenter the hypoth-

esis bank around the actual value. Recall that when the center Uc of the command

bank (referred to here as "the center" for convenience) is equal to the value of

the true command, this bias is removed. Since the actual value of the command

is not known, our algorithm uses the command estimate Uop instead. The main

idea is therefore to periodically recenter the command bank around the estimated

command value.

A straightforward implementation is to average the estimated control

over a time interval long compared to the system and the observer time constants

and to feed back the average as the new center. Specifically the difference between

the estimated command Uop and the center Uc is averaged using an autoregressive

filter to produce the center deviation Ucd.

Ucd n = aUcd n_x + (1 - a)(Uop n_! - Uc n ) (2.88)

This average value is used to dynamically shift the center and the complete com-

mand bank.

UC n+i =Ucn + Ucdn (2.89)

UIB+1 = Uln + Ucd „ (2.90)

Although this method was implemented, its performance was poor for the following

reason. The combination of the command hypothesis UI and the weight vector
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W is a discrete description of the command probability distribution estimated by

the Bayesian recursion (Eq. (2.23)). Updating the command hypothesis vector but

keeping the weight vector unchanged effectively modifies the command distribution

and disrupts the recursive command estimation.

Further, the command bank yields, over some time, a corresponding

bank of hypothesized states in the form of the matrix XI which based on Eq. (2.76)

is

XI = |&& . . . SN \ + X • N = F(UI + U • N).

Different states correspond to the new updated command bank. Shifting the com-

mand hypotheses bank introduces an undesirable transient in the state vectors of

the filters. This transient seriously degrades the tracking. Furthermore, the feed-

back of the state vector's transient into the recursive command estimation process

(Eq. (2.22) and (2.23a)), may lead to instability of the entire tracker.

It is clear therefore that updating the command bank center alone

disrupts the recursive estimation process unless there is a corresponding update

of the weight vector W and the state matrix XI. In simulation recentering the

command bank without updating the weight vector and the state matrix resulted

in complete divergence of the command estimate.

b. Complete Model Updating

An alternative approach was devised where the complete model was

updated and the instability was eliminated. The method was as follows:

• The update was restricted to occur at discrete events in time when the averaged

deviation of the center Uc from the estimate Uop reached a preset threshold.

• The commands and the command center were restricted to take on a set of

discrete quantized equally-spaced values. Updating was done by shifting the

entire bank up or down one position.
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• The complete model including command and state banks, and the weight

vector were updated.

The time discretization was intended to prevent the continuous dy-

namic feedback which led to instability. The time constant used for the exponential

command deviation averaging was set larger than both the system and the MM

estimator time constants. This was done to ensure complete transient recovery

from one update before another update is allowed.

The model update was implemented in a cyclic manner. The least

likely filter in the bank, i.e., the one corresponding to the command furthest away

from the estimated command, is dropped. A new and more likely command is

added at the closer end of the bank. The probability of the new channel is initially

N
set to that of the one that is dropped, so that the total probability ^ Wi is kept

equal to 1. If the update takes place at time k then

UI
fc+ = UI*_ ±AU-N (2.9i)

where the subscripts k~ and k+ represent the control prior to and after the update

and the sign of AU depends on the sign of the averaged center deviation Ucd (Eq.

(2.88)).

A block diagram of the modified MM is shown in Fig. 2.7 and Fig.

2.8 shows an example of a model update process assuming the update takes place

at time index n = k. The variables at time k~ , i.e., just prior to the update,

are shown in Fig. 2.8a; the variables immediately after the update (time k+ ) are

shown in Fig. 2.8b. Prior to the update the bank is centered around Uc =

and spans the interval —15 to +15 [m/sec] as shown along the horizontal axis.

The second (lower) horizontal axis represents the first component (position) of

the state vectors of all filters in the bank (this is the first row of XI) before the
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update. This spans the interval 8.5 to 11.5 km. Dining the update the first

hypothesis (Ui)k- =—15 m/sec is dropped and a new hypothesis (^7)*+ is added

at +20 m/sec with a corresponding state position XI[1, 7]*+ at 12 km (Fig. 2.8b).

The weights Wi (conditional probabilities) for all the filters except that of the new

one are shifted one position. This is done in order to maintain the correspondence

with the hypotheses. The new filter assumes the weight of the filter that is dropped

(0.01 in the example shown). The command bank is now properly centered around

5 m/sec. The command estimation transient is shown in Appendix C to be given

by

Utransient=KAU(W1 ) k- (2.92)

For the specific case in Fig. 2.8 this transient is therefore

Utransient = 7 • 5 • 0.01 = 0.35m/seC. .

This minor transient is further smoothed by the output smoother and its effect on

the output Uop is negligible.

The command in the bank and the center Uc are restricted to the

evenly spaced discrete values. The center update is further limited to a one position

shift up or down from its current position on the discretized scale. The command

bank update is thus implemented by means of the linear shift given by Eq. (2.91).

Since the states of the bank are also evenly spread over the state scales (position,

speed and acceleration). The corresponding update of the states matrix XI can

thus be implemented by means of a linear shift as follows

XI
fc+ = XIjfc_ ± AX • N (2.93)

where AX is the constant vector F • AU • N (Eq. (2.78)). The complete model is

thus updated by a simple one position shift. The shift is linear for the command
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Fig. 2.7. Model update block diagram.
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Fig. 2.8. Complete model update.

75



www.manaraa.com

UI and the state XI, and circular for the weight vector W. The simplicity of

the model update procedure (which requires no computation) resulted from the

constraint of the center Uc to assume values on the discrete command scale.

Tracking with the complete adaptive model (updating UI,W and XI)

is shown in Fig. 2.9. Notice the command and position biases developing just prior

to the update 2.9c which is reduced by the two updates at the 18tA and 35th

minute, and the almost unnoticeable transient. Further persistence of the same

target motion would lead to additional updates which would eventually reduce the

bias completely.

2. Second Order Target Model

In Eq. (2.8) the second order target model was augmented to a third order

model in order to account for the uncertainty in the maneuver command. Prac-

tically this augmentation effected the tracking by increasing the error covariance

matrix P which in turn increases the Kalman gain (Eq. (2.14)). Since the Kalman

gain is so critical in the MM estimator it is additionally trimmed by the factor Du .

In the original third order Singer model the third state variable w was

the only state variable that accounted for the target acceleration. In the MM
the command (and the corresponding acceleration) is separately estimated as the

independent state U. With both the acceleration estimate and the Kalman gain

handled otherwise the use of the third state w is redundant and can be eliminated.

Elimination of this state results in the following second order model

XI2 n = <f>2 XI2 „_! + r2 C/n _! (2.94)

Where XI2H 2 and T2 are the first two rows of XI, H and T respectively, and
<fr2

is the 2x2 upper left block part of
<f>

(see Eq. (2.15)). This configuration will save

computation time and simplify the gain adjustment procedure.
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Fig. 2.9. Tracking of an updating model.
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Fig. 2.10 compares the tracking of a third order model with steady state

Kalman position gain G[l] = 0.041 to the tracking of a second order model with

practically the same position gain (G[l] = 0.042). The gain of the second order

model is controlled by cru which affects the gain via D tt
= Ta^T . The performance

of the two models is similar except the third order system has a larger overshoot.

3. Second Order Smoother

An improved second order smoother referred to as an advancing smoother

was introduced [25] in order to reduce the constant speed target lag error (Eq.

(2.75)). The basic idea is to average the new filter output £n
|

n with the predicted

point xn
|
n_! rather than with the previous estimated position xn_i| n_i. The

current estimated speed is used to generate the predicted position according to

(Xop )n = a • [1, T, 0] (Xop )n_! + (1 - a)[l, 0, OjXJlJn. (2.95)

If carried out to the full extent, this principle would turn the smoother into a

Kalman filter by itself. The need for this additional smoothing, which is usually

handled by means of a reduced Kalman gain, results from the optimizing the gains

to meet the overall MM requirements. This forces the additional external smooth-

ing.

4. Improved Measurement Noise Model

A range dependent, nonnegative noise is used in this simulation in place

of the range independent normally distributed noise used in past work.

a. Dependence on SNR

The dependence of the delay estimation noise standard deviation (STD),

on the range, via its dependence on the SNR, was modeled here in two ways. In

the first model the range dependence is lumped into the following equation.

STD
t
(R) = STDt0 Rp (2.96)
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79



www.manaraa.com

where STDi is the i-th TDOA error initial standard deviation at 500 m from the

source, and p is the delay noise range power factor which depends on propagation

loss. The variable p takes on values in the range of 1 to 3. A low value for p (p = 1)

corresponds to a high SNR and cylindrical propagation while a higher value (p = 2)

corresponds to low SNR and spherical propagation. Higher p values corresponding

to increased loss due to ray bending were not considered.

In the second model, a more recent and detailed description was used

based on Ref. 14. Here the exact dependence of the variance on the bandwidth,

the observation time T and the SNR was implemented. The parameters of the first

simplified noise model (STDq and p) were set to provide an overall similar noise

variance which is similar to the results of the second noise model.

b. Nonnegative Time Delay

Another feature of the time delay estimation for a single receiver is

the inability to distinguish a leading signal replica from a lagging one. This results

from the symmetry of the autocorrelation function (ACF) of real signals. The

nonnegative time delay effect was simulated by applying the absolute value operator

to the time delay after the noise was added. That is

r
i m = \r

l
+v i \

(2.97)

where V{ ~ N(0,STD?(R)). This operation produces a bias primarily for

aT D.
'

ffl) ^ 1' which is also discussed in Appendix D.

After the addition of the noise the simulated TDOA undergoes a non-

linear inversion to depth and range which also produces a bias. The bias was

studied for the idealized, homogeneous and space invariant delay noise, by Moose

in Ref. 11. Investigation of this error and its correction for the IH case, and the

means to account for it are discussed in Chapter Four.
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c. Depth Range and Bearing Noise

When the filter was evaluated by itself (without the prefilter) noise

was added to the depth and range measurement directly. Normally distributed

range dependent noise was used such that

Dm =D + vd (2.90)

Rm ~ R + Vr (2-99)

where

vd ~ iV(0, STD 2
r (R)) (2.100(a))

vr ~ AT(0, STDftR)) (2.101(6))

and the standard deviations given by

STDd{R) = STDdo • RPb (2.101(a))

STDr{R) = STDro • RPh
(2.101(6))

with STDdo STDro being the initial STD at 500 m and pf, the range dependence

factor.

Range dependent noise was added to the bearing channel as well in

order to maintain a consistent uniform simulation. The bearing measurement is

thus

Bm = B + vb (2.102)

where

vh ~N(Q,STD 2
h ). (2.103)
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The bearing error standard deviation used here is given by:

STD(R)B = STDb0 RPb (2.104)

where STDf, is the bearing error standard deviation at 500 m from the source.

E. SIMULATION

1. Model Description

The simulation model was designed to evaluate the overall MP tracker

performance, both in the idealized homogeneous case and later in the realistic and

IH environment ^napter Four). The following were set as subgoals for the design:

• Support of a multilevel system evaluation starting from the individual algo-

rithm up to the complete integrated system.

• Provide a detailed evaluation of the 3-D maneuvering target tracker perfor-

mance with emphasis on the 3 axis integration and the tracker modifications.

• Support of a gradual departure from the idealized homogeneous MP config-

uration towards the more realistic IH case. The transition includes both the

simulated IH measurement and the algorithm designed to deal with this dis-

tortion. This again is in support of Chapter Three.

In order to maintain a consistent and unified simulation environment the

model was designed to meet all of the above subgoals by optional use of its various

components. The model is discussed here in its entirety; however the details of

some of its components are addressed in the following chapters.

A block diagram of the simulation model is shown in Fig. 2.11. The

simulation proceeds as follows. Depth, range and bearing target position D, R, B

is generated by the scenario generator. The depth and range are converted to

TDOA rj , r2 by the MEDIUM. Noise generated by the NOISE module is added to

the TDOA to form the measured Tlm T2m which are fed to the PREFILTER. The
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prefilter performs a functional inversion to compute the depth and range measure-

ments Dm Rm . Noise is also added to the bearing to simulate a realistic bearing

measurement Bm . The TARGET TRACKER uses the three noisy measurements

to produce a 3-D target estimate. The estimate includes position Rop,Bop , rate

Rop,Bop and command Ur op , Ub op , for the range and cross range axis, and posi-

tion Dop for the depth axis. The noisy measurements and the tracker estimates

are compared to the output of the scenario generator to produce the measurement

and estimation errors. Details of each of the blocks are described below.

The SCENARIO GENERATOR contains a model for both the target and

its pilot. It includes the target dynamics (Eq. (2.10)) as well as a prescribed target

trajectory and it outputs the target position in depth, range, and bearing. Three

different types of pilots were programmed.

Pilot 1 describes the target motion by an initial state and a set of discrete

and independent sequences of maneuvering commands along each of the

three axis.

Pilot 2 is similar to Pilot 1 except it provides a continuous gradual change of

the maneuvering command.

Pilot 3 prescribes a target moving along a straight horizontal line with constant

speed (Eq. (2.8)). As discussed in Section C this target will be seen as

maneuvering by a cylindrical coordinate tracker.

The MEDIUM converts the target depth and range coordinates to time

delay differences T\ , T2 (or t\ , £2)- It includes a model for the effects of the medium,

the receiver, and the noise. Two groups of models were programmed, namely the

homogeneous group and the inhomogeneous group described below.
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Fig. 2.11. Simulation block diagram.
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The homogeneous group .

Medium 1 This is a bypass mode where the depth and range are used directly,

without the conversion to time delays and back to depth and range.

This mode is used to evaluate the MM tracker by itself.

Medium 2 The approximate formulas valid for R» D, [Ref. 9]

n = m^zni (2 . 105a)

2(DW - Dq)(Dw - Dp + D)
t2 = — (2.1056)

were used for the direct function.

Medium 3 The exact cl< »sed form analytical expression of time delays as func-

tion of depth and range derived by Hassab (Eq. (1.1)) were used here.

The implied assumptions here, besides straight line propagation, are

that the delays are perfectly resolvable and can be associated with their

corresponding paths.

The inhomogeneous group .

Medium 4 This is the only medium that was implemented in the group. Here

the three assumptions implied above were removed and an IH medium
with finite resolution and non-associable time delays is generated. The
theory and implementation of Medium-4 are the subject of Chapter

Three. TDOAs for the realistic IH medium are noted as #1,^2-

The NOISE models were used for the TDOA measurements. They were

noise type (NT) one and two. NT 1 used Eqs. (2.96) and (2.97). NT 2 used Eq.

(2.96) and the more elaborate noise model which provides the STD; as a function

of range and the target signal to noise ratio at range of 1 m (SNRo). The model

and the parameters it uses are described in Appendix D.

When no medium and prefilters were used, noise was added directly to

depth and range using Eq. (2.98) and (2.99). Noise was also added to the bearing

according to Eq. (2.102).
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The PREFILTER converts the noisy TDOA estimates transforming them

to depth and range. This is done by inverting the nonlinear chVect function. Six

different prefilters were designed and grouped into two groups: homogeneous and

inhomogeneous prefilters.

Homogeneous prefilters .

Prefilter - 1 This is the bypass case where no functional inversion is done since

the inputs are depth and range, corresponding to medium 1.

Prefilter - 2 This uses the following approximated relation

D = D"
~ TiD

D« (2 - 106a'

T
> + D„-D» T*

R = .

2DaDw
r- (2.1066)

valid for R» D corresponding to medium-2 [Ref. 9].

Prefilter - 3 This is the exact analytic closed form relation of Eq. (1.2) corre-

sponding to Medium 3.

Inhomogeneous prefilters .

Prefilters - 4,5,6 These correspond to the inhomogeneous medium, with finite

TDOA resolution and non associable delays of medium 4. These again

are discussed further in Chapter Three.

The TRACKER uses the measured depth, range and bearing as inputs for

the 3-D maneuvering MM target tracker. Third and second order target models

with first and second order smoothers were realized. The command bank was either

fixed or adaptive as discussed in Section D.l.

2. Description of the Output Plots

Three main plots are produced as output for each axis of the cylindrical

coordinate system; they are the position, the speed and the command plots. When

a combination of plots is presented the plot symbol markings are synchronized in
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time on all the plots of a given run to provide a means for cross reference between

them.

The values of the simulated Runs were recorded and plotted only every

fifth sample time to avoid cluttering of the picture. An example of a full sample

rate plot (with a point plotted for every sample time period) versus a reduced

sample rate (point plotted every fifth sample time) is shown on Fig. 2.12.

The position plots (depth, range, bearing, and X, Y as functions of time)

include the true, measured, and estimated positions. The true position is the

scenario generator output D,R,B; the measured position is the prefilter depth

and range outputs Dm , Rm and noisy bearing Bm ; and the estimated position is

the tracker output Dop Rop Bop . Position error plots show the difference between

the measured or estimated positions and the true position.

The speed plots present range or cross range speed as a function of time.

Various combinations of the actual and estimated speed and speed command are

included. The center of the command bank is also shown. Note that when Pilot-3

was used, constant Ux and Uy are applied (Eq. (2.8)). The commands Ur and Ub

are not used. The model however does estimate Ur and Ub, which are presented

on the plots.

Command weights of the recursive Bayesian estimator are plotted in 3-D

plots of the weight vector as a function of time. These plots provide a good measure

of the MM adjustments and tracking quality.

3. Parameters Selection

The large number of parameters required for each run dictated a strict and

well controlled mechanism of parameter selection. This was especially required for

the realistic IH case where there was a large amount of ocean and acoustic data

and parameters. The data was divided into the following three categories: target
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and scenario; medium and prefilter; MM parameters. The detailed definition of

the parameters and their values in the simulation is presented in Appendix D.

F. SIMULATION RESULTS

Five straight line trajectories are presented differing mainly in the noise used.

Run 1 used range dependent depth and range noise without the multipath

measurement (Mdn = \,Pfn = 1). The range dependence p was set at 1 and the

depth and range error STD at 500 m were set to 1 and 50 respectively.

Runs 2-5 used range dependent TDOA noise based on the improved noise

model (NT = 2) with SNR and p set according to Table 2.3.

A detailed list of the other parameter settings is included in Appendix E.

TABLE 2.3

NOISE PARAMETERS

Run SNRo [dB] p

2 50 1

3 70 2

4 60 2

5 50 2

Results of Run 1 are shown in Fig. 2.13. Range (a) depth (b) and range error

(c) are shown. The increase of measurement and tracking errors with increasing

range is seen on all three plots. The very effective noise filtration of the filter is

demonstrated in Fig. 2.13c after the completion of the initial transient (around

the 12 min and on). The range measurement noise STD which was 1000 m at 10

km was reduced to less than 100 m. Range error reaching 17km develops around

the CPA which occurs at the 17th minute at a range of 3 km. The results of this
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Fig. 2.13. Run-1: Range dependent DR noise.
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Run set a reference performance for the MM maneuvering target tracker by itself

(without the prenlter).

Results of Run 2 are shown in Fig. 2.14. The performance of the MM

tracker and the homogeneous medium and prefilter are demonstrated with range

dependent TDOA noise.

As can be seen, the cylindrical propagation (p = 1) provides very favorable

conditions even when the initial SNRo is relatively low (50 dB at 1 m range). Note

the four model update cycles the MM goes through in response to the changing

range rate. Also note the vanishing range tracking error which results from the

use of the advancing smoother (25
tA minute in Fig. 2.14a). Good bearing tracking

and the combined horizontal tracking are shown for this run in Fig. 2.15. The XY

tracking error at the CPA is clearly evident.

The effect of increasing TDOA noise as a result of decreasing target signal

strength (Run-3, 4) is shown in Figures 2.16 and 2.17. The failure of the tracker

in Run 4 past the range of 15Km at the 27th minute of this run is also evident in

the command estimation plot shown in Fig. 2.17c.

Very noisy TDOA measurements resulting from low SNRo and spherical

spreading (Run-5) is shown on Fig. 2.18. Large estimation bias which results from

the nonnegative effect is clearly seen at ranges larger than 12 km. The depth is

also underestimated at these ranges.
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Fig. 2.14. Run-2: Low TDOA noise (p = 1).
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93



www.manaraa.com

RANGE:ACTUAL •, MEASURED + . ESTIMATED 7

10 20

TIME [UIN]

DEPTH:ACTUAL •. MEASURED + . ESTIMATED 7

2
a

a * -

t\T*r- *—-^jfe

J L
10 20

TIUE [WIN]

Fig. 2.16. Run-3: Range dependent noise SNRo of 70 dB.
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Fig. 2.18. Run-5: High range dependent noise SNRo of 50 dB.
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G. SUMMARY OF TRACKER EVALUATION

The performance of the modified target tracker is summarized below.

• Generally the tracker is well suited for 3-D maneuvering target tracking.

• Measurement noise variance is significantly reduced by the tracker. The range

measurement STD of 1000 m can be easily handled and reduced to around 50

m.

• The performance depends strongly on range, especially when range dependent

MP measurements are used. However up to 15-17 km the filter tracks well

without readjustments.

• Tracking errors that can reach 2 km in range develop at short ranges for

nonmaneuvering targets moving along straight lines due to the coordinate

decoupling and linearization.

• Recentering of the command bank around the average actual command is

required in order to remove the inherent MM estimation bias. The new model
update technique devised here effectively accomplishes this task by recentering

the command bank around the estimated command value.
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m. TNHOMOGENEOUS REALISTIC MULTIPATH DEPTH
AND RANGE MEASUREMENTS

A. INTRODUCTION

The following idealizing assumptions mentioned in Chapter One and used in

previous broadband MP tracking studies are removed in this chapter:

• Homogeneous straight line propagation.

• No propagation and reflection loss.

• Infinitely resolvable TDOA.

• Ability to associate delays with acoustical path.

The impact of these effects on the tracker is investigated in Section B. Section

C presents the improved prefilter which provides the functional inversion of time to

depth and range measurement for the IH realistic medium. Chapter Four analyzes

the performance of the new inversion algorithm as a component in the overall MP

tracking system.

B. REALISTIC MEDIUM AND RECEIVER EFFECTS

1. Propagation Loss and Reflections

The most dominant effect the medium has on the propagating acoustic

wave is the transmission loss. Three contributors to the loss are discussed: the

spreading, the absorption, and the imperfect reflections from the boundaries. Spe-

cial attention is given to the effect that the reflection from the non-ideal boundaries

has on the multipaths.
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a. Spreading Loss

The spreading loss, as the name implies, is the result of the spreading

of the acoustic energy over a growing area, as the distance from the source increases.

In spherical spreading, the energy spreads evenly over the surface of a sphere. This

makes the intensity, the power per unit area, inversely proportional to the squared

range. The relation is

I(R) = I -R- 2
(3.1)

where Iq is the intensity at a distance of 1 m from the source.

Under other propagation conditions different range dependency re-

sults. For example, with cylindrical propagation the intensity is inversely propor-

tional to the range itself, that is

I(R) = h R' 1
(3.2)

In deep water, away from the surface or the bottom, one finds spherical

propagation to be a good assumption for short ranges. In shallow water, where

MP effects are more dominant, cylindrical propagation is a better representation.

In the IH case the wavefront is distorted by the variation in the speed

of sound. Although the resulting spreading loss is not simple, a dependence on

the p-th power of range can still be useful as a first order approximation. The

approximation is

I(R) = Jo • R~ p
(3.3)

where the empirical constant p, which we call the range propagation power, is not

limited to integers.
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b. Absorption Loss

Part of the energy of the propagating acoustic wave is absorbed by

the water and eventually is turned into heat. The absorption loss depends on the

salinity of the water, the frequency, and the distance traveled. In short to medium

ranges (below 15 km), and at sufficiently low frequency (below 10 KHz) this is not

a dominant phenomenon and will therefore not be considered here.

c. Reflections From the Boundaries

The laws of pressure and velocity continuity across the boundary gov-

ern the reflections from the surface and the bottom [Ref. 23]. A wave propagating

in medium 1 impinging on a boundary at an angle 0\ is both reflected back at an

angle (3\ and refracted into medium 2 at an angle 02 as shown in Fig. 3.1.

Fig. 3.1. Reflection from a boundary.
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The acoustic pressure reflection coefficient defined as

r = £ (3.4)

where pi , pr are the acoustic pressures of the incident and reflected waves in medium

1. The reflection coefficient is given by

= Z2 cos/3i - Zicos02 , .

Z2 cos fix + Zx cos B2

where Zx and Z2 are the specific acoustic impedances in media 1 and 2, respec-

tively. The specific acoustic impedance is defined as the ratio between the complex

amplitude of the acoustic pressure p and that of the magnitude of the particle

velocity U'. The angle fi2 is given by fi2 = sin
-1

( ^- sin fix
J
where Cx and C2 are

the speeds of sound in the two media.

The specific acoustic impedance for a plane wave can be expressed in

terms of the speed of sound C and the equilibrium density po of the medium as

Z = po • C (3.6)

which is known as the characteristic impedance.

Since the characteristic impedance of air is much smaller than that of

water, the surface boundary has a reflection coefficient close to —1 (see Eq. (3.5)).

Further, since the characteristic impedance of the bottom is generally larger than

that of the water, the resultant reflection coefficient of the bottom is positive.

The reflections from the water air boundary becomes somewhat more

involved when the layer of air bubbles formed near the surface by the wind and

the ocean waves is considered. But unlike the air (which is isotropic) the bottom

may be lossy and anisotropic. In particular, shear waves excited by the impinging
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acoustic wave travel in the bottom with different characteristics than the refracted

longitudinal waves. These effects give rise to less predictable and complex acous-

tic impedance and complex reflection coefficients which strongly depend on the

bottom type. For a boundary with frequency dependent characteristic impedance

Z2 = r2 4- JX2 , the pressure reflection coefficient will vary both with frequency and

angle of incidence, and will depend on the bottom type and sea state (for surface

reflection). Exact prediction of the phase of a reflected wave is made difficult by the

large variation in pressure reflection coefficients. This phenomena has a marked

influence on MP tracking. The intensity, which is related to the square of the

pressure, has the reflection coefficient T/ given by

Ti = |lf (3.7)

which also depends on the above ocean and acoustic wave parameters. In a very

simple practical analysis, the energy loss due to the various boundary effects is

lumped into a single number called the reflection loss. The reflection loss depends

mostly on the sea state, the bottom type, and the frequency band. Loss values in

the range of 3 to 30 dB per bounce are commonly found. The sensitivity of the

reflection phase to frequency and angle of incidence has a marked influence on MP

measurements.

2. Inhomogeneous Medium

a. Speed of Sound Variations

The speed of sound in the water is given by the formula [23]

C = 1449.2 + 4.6T - 0.055T + 0.00029T + (1.34 - 0.01T)(S - 35) + 0.01QD (3.8)

where T is temperature in degrees centigrade S is the salinity in parts per thousand,

and D is the depth in meters.
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The sound speed is obviously not constant in the vertical water column,

due to change of the pressure and the temperature with depth. The variation of

sound velocity with depth, referred to as the sound velocity profile (SVP) is the

main source of inhomogeneity in the acoustic ocean medium. Waves propagating

in such a medium are refracted in a complicated manner, and obey the second

order linear partial differential scalar wave equation [20]

where ip(t, r) is the velocity potential at time t and position r. C(r) is the speed of

sound at position r, and Xm(^r) is the source distribution (volume flow rate per

unit volume). The acoustic particle velocity vector U(tf, r) and pressure p(£, r) are

given by

p(t,r) = -pQ
-9 {t,r) (3.10)

U(t,r) = Vp(t,r). (3.11)

Solution of the wave equation for the general case is very difficult.

However, when the speed of sound is a linear function of depth the approximate

ray acoustic solution yields simple closed-form equations. The detailed develop-

ment of the ray acoustics approximation is based on the WKB approximation and

is presented, for example, in Ref. 20. The resulting ray tracing equations are

presented below.

b. Ray Tracing

The parameters and geometry of a typical ray-trace are shown in Fig.

3.2. Note that the rate of change of sound speed with depth is a constant known
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Fig. 3.2. Acoustic ray path.

as the sound speed gradient g, which has units of [sec
-1

], and the speed of so^nu

C is given by

C{D) = C +gD (3.12)

where Co is the speed of sound at the surface.

In transition from depth D\ where the sound speed is C\ to depth D2

with sound speed of C2 , the ray angles (3\ and fa obey Snell's law

sin fa C\

sin fa C2

(3.13)

Thus a ray emanating from a source at D\ , R\ , at an angle (3\ , reaches depth D2

at an angle /?2 given by

/?2 = sin I — sin (3i
J
= sin

1
Cp + gD2

Co + gDi
sin^i

and at a range R2 given by

(3.14)

Q
R2 = R\ H :

—

— (cos 0x - cos (32 )
^sin^i

(3.15)
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which can be evaluated by solving Eq. (3.14) for /?2 and substituting into eq.

(3.15). The travel time T and the arc length S of the path are given by

T m Jfcgft/j} (3.16)
g tan(/?i /2)

and

5 = -?V(^-/?i). (3.17)

The ray traverses the depth range (DR) plane along of a circle with radius Rray

given by

centered at the initial range and the conceptual depth Dcen ter . This is the point

where the speed of sound would have become zero if the gradient had been constant

to that point; it's value measured from the surface is therefore given by

Lscenter = • (3.19)
9

Tracing the ray intensity is based on conservation of energy. A hypo-

thetical amount of radiated power trapped in a ray tube produces intensity which

is inversely proportional to the cross sectional area of the tube. Tracing the cross

sectional area along the tube, using the ray tracing equations, provides the required

intensity computation.

^O =^M (3.20)

A singular case arises when the cross sectional area of the ray tube

reduces to zero and drives the intensity to infinity. This is called a focal point.

Focal points in which the intensity is very high are actually encountered in the ocean

and the acoustic intensities measured there are very high. Ray acoustic intensity

computations are obviously not valid under such conditions. A ray going through
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a focal point is phase shifted by 90 deg. This phenomenon which is experimentally

measurable, can be explained analytically although not in a trivial manner.

Ray equations allow tracing a ray in a medium of constant SVP gra-

dient, however, a constant SVP gradient is rarely the case in practice. When the

SVP is not linear, it can be represented by a piecewise linear function which has

constant gradients within depth layers. Eq. (3.14) through (3.17) are then used to

trace a ray inside a given layer. The continuity of the linearized SVP and Snell's

law ensure ray angle continuity in the transition between layers. Consecutive trac-

ing of the ray inside the constant gradient layers can thus construct the complete

ray path throughout the entire medium.

c. Effect on MP

(1) Time Delay. An example will help demonstrate the effect of

the IH propagation on MP depth and range measurement. A set of time delays

for an IH case is computed for a given target and set of ocean conditions using

Eq. (3.16). These time delays are then used as independent variables of the

homogeneous inverse function Eq. (1.2). The erroneous inverted depth and range

are compared to the original values.

A constant gradient of g= 0.05 sec
-1

in the 100 m near the

surface, *in water depth of 513 m and a target at depth of 100 m and range of

7 km,** produce TDOAs to a receiver at depth of 162 m of Tj =5.48 ms and

r2 = 28.92 ms. When substituted into Eq. (1.2), which is based on straight line

propagation, a depth of 19 m and range of 5.64 km are produced. This represents

a percent error of 20% in range relative to the true 7 km range.

* See case C2251 in Appendix E
** Measured relative to the receiver, see Fig. 2.1
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(2) Lack of Closed Form Solution - The Eigenray Problem.

Of significant importance is the fact that in all the tracing equations the initial

transmission angle at the source (/?i ) is assumed to be known. This angle, which

can alternatively be replaced by the reception angle (#2)> actually 'selects' the ray

to be traced.

The reverse problem of finding the terminal angles of a ray pass-

ing through two given end points is called the eigenray problem. The eigenray

problem does not have a closed form solution in the IH case, especially not in the

multilayered SVP case. This is part of the difficulty which prevented compensation

for the medium inhomogeneity in previous work and thus became a key challenge

of our work.

(3) Loss of Direct Ray. Another outcome of the IH propagation

is the possible loss of direct path between the source and receiver due to the ray

bending. Fig. 1.3a, which was computed by a Fortran program [26] using the ray

tracing equations, shows an example of a receiver Rx placed in an area not reached

by direct rays from source Tx which is referred to as a "shadow zone." The first

arrival in this case is the reflection from the bottom. The second arrival is the ray

reflected from the surface and then from the bottom. The third arrival is the one

reflected from the bottom first and then from the surface. The above mentioned

difficulty to predict the exact amplitude and phase of the reflected wave is further

enhanced for a case of double reflection such as the one shown. The polarity of

the ACF peaks becomes less predictable. Thus, it is obvious, that the IH medium

amplifies the problem of path identification.

In Comparing Fig. 1.3a to Fig. 1.1, the difference in the MP

structure is mainly that the direct path Tq of Fig. 1.1 does not exist in Fig. 1.3b. A

scalar called the bounce count (BC) was devised here in an attempt to characterize
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the MP structure. It is defined as the total number of depth extremes in the set

of the first three resolvable arrivals (two TDOAs).

The bounce count of the straight line propagation of Fig. 1.1 is

2 due to the single bounces of both the surface and the bottom paths. The bounce

count of the first three arrivals of the MP structure in Fig. 1.3b is 4 due to the

single bounces of the first and second arrivals and the two bounces of the third

path. The bounce count therefore distinguishes between the two MP structures.

While ambiguous as an absolute descriptor, the bounce count

was found to be very useful in practice primarily in identifying a change in the

MP structure. By plotting the BC over a depth range cross section of the ocean,

it became easy to divide the plane into regions of consistent propagation as will

be shown later. Care should be exercised, however, in detailed analysis using the

bounce count since radically different MP structures could produce identical bounce

counts.

3. Ocean Data

The travel time of paths reflected from the bottom is obviously dependent

on the ocean depth. Error in the assumed depth will cause errors in the inverted

target depth and range. The CRLB for the joint estimation of ocean depth and

target depth and range was developed by Hamilton [Ref. 19] as a composite estima-

tion problem, with depth assumed normally distributed. The impact of a constant

depth error is demonstrated in Chapter Four.

4. Receiver and Delay Estimator Effects

The effect of the limited delay resolution, and the inability to associate

delays with paths are considered here along with an outline of a hypothetical but

realistic form of delay estimation instrumentation.
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a. Bandwidth and Delay Resolution

The target broadband noise has a limited bandwidth. Further, the

high frequency portion of the spectrum tends to attenuate in a shorter distance

than the lower frequency portion as the sound travels through the water, due to

absorption processes. The receiver, on the other hand is constrained by engineering

design compromises arising primarily from the beamformer, and computational

load associated with its sampling rates. The result is that the acoustic receiver

bandwidth is rarely ever more then a few KHz wide.

The limited bandwidth translates into a limited resolution between

adjacent time lags. If one assumes a uniform signal spectral density over the entire

frequency band of to B Hz, the main lobe of the autocorrelation function of the

original signal x(t) will be of the form

ACFxx(r) = ACFxx(0) • sinc(r B) (3.21)

and its first zero occurs at 1/B sec. Replicas of the original signal which are less

then 1/B apart will form a nonresolvable combined ACF peak. (In the extremely

unlikely event of two opposite sign equal amplitude replicas the ACF peak may

even disappear altogether.)

b. Nonidentifiable Path

The combination of the effects discussed earlier render the association

of the TDOA with the corresponding path a difficult task indeed which is imprac-

tical in many target tracking situations. The polarity of the ACF peaks is strongly

affected by the following:
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• Potential loss of the direct reference path.

• Complex frequency and angle dependent reflection coefficients.

• Phase shift through a focal point.

An alternative approach taken here is to rely only on the time difference values,

and to disregard the ACF polarity and its possible association with a specific path.

The response of the time delay tracker to this nonresolvable nonasso-

ciable situation will determine the behavior of the target tracker. For this reason,

the specific instrumentation of the time delay estimator assumed here is briefly

described below.

5. Instrumentation Outline

A discrete set of ACF values spanning the range of expected lag time, is

computed by time or frequency domain methods, using the time sampled acoustic

signal. A polynomial is fitted to the sampled ACF lag data and its first two

amplitude maxima, are located (excluding t = 0). The lags times corresponding

to these peaks are the MP time differences of arrival (or delays). The delays are

usually further filtered by a simple exponential averager.*

The first two lags are preferred for the inversion since they result from

simpler paths and are expected to have higher SNR. But when any two of the

first three ACF peaks coincide only one combined and somewhat erroneous peak is

formed. An example where this problem is significant and very typical is a source

placed near the surface. The direct and surface reflected paths from the source

to a distant receiver will have very similar path length and travel time, and their

ACF peak will not be resolvable.

* Another technique of similar consequence uses interpolation between

adjacent ACF samples to reconstruct the continuous delay, Friedlander [16].
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Other lags corresponding to more complex and longer paths, do exist and

can be used in such cases. Having longer lag time, these delays will not vanish, due

to loss of resolution, incidentally with the first two. The third or higher lags can

thus provide an alternative measurement, at least while one of the first two lags is

lost.

In the instrumentation model simulated here a third ACF lag is tracked all

along, and is substituted as the second lag only when any of the first three arrivals

coincide. The two nonresolvable lags are reported as one lag under this situation.

Coincidence is defined with some safety margin that ensures substitution of the

third lag prior to the actual loss of resolution.

In Fig. 3.3 plot of the first three TDOA as a function of history time k

is shown. At time T#
2
the ACF peak of T\ is not resolvable from the main lobe

at r = 0, and is consequently replaced by r^ which in turn is replaced by T3 . The

third TDOA T3 was tracked but not output before T#2 • If ri and T2 merge at Tfji ,

as shown in Fig. 3.4 their combined peak will be reported as T\ and T3 will replace

T2-

In the straight line homogeneous propagation, identification of the mea-

sured delays as T\ and T2 is assumed such that they can be used in Eq. (1.2). In the

realistic IH case the delays are identified instead as the first (shorter) and second

(longer) lags. A vector of two time delays, the first of which is always the smaller,

is output by the estimator and these modified TDOAs are denoted as T\ and T2

.

6. Resulting Ambiguity

The proposed method of time delay extraction immediately raises the ques-

tion of ambiguity. There can obviously be more then one position with the same

two time delays as demonstrated by the simple following case.
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R(t)

Fig. 3.3. Unresolvable ACF peaks t t\.

Fig. 3.4. Resolvable ACF peaks t\t 2 .
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For an observer at depth 162 m and water depth 503 m the targets:

Position Target 1 Target 2

Depth m -100 -242

Range m 6000 4782

produce To , T\ , T<i direct surface and bottom travel time, respectively of

Travel time [sec] Target 1 Target 2

To 4.00055 3.192079

Tx 4.00997 3.210297

T2 4.01877 3.201499

yielding travel time differences of

TDOA [msec
l

Target 1 Target 2

Ti = T! - T 9.41 18.2

T2 = T2 — To 18.2 9.41

After sorting i;hese become

Modified TDOA [msec] Target 1 Target 2

t\ = Mm{ri, 1} 9.41 9.91

t2 = Max{T\,,Tl} 18.2 18.2

Yielding the same T\ t2 set for two vastly different depth range positions.

This ambiguity is a direct result of the inability to associate paths and

delays. Means to reduce this ambiguity to a manageable proportion axe covered in

Section C. A more effective use of the high bounce count paths designed to further

reduce the ambiguity is discussed in Chapter Six.
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7. Graphical Representation of the Medium and Receiver

Effects

a. Introduction

The 2-D direct function transformation of source depth and range

(DR) position, to MP time delays, (ti , T2), can be viewed as surfaces of delays over

the 2-D depth-range position plane. These surfaces are the basis of the MP inver-

sion procedure and understanding their nature is important in the development of

the inversion process.

The graphical interpretation of the direct function will be presented

in this section including the following effects which the medium and receiver have

upon this function:

• Lack of path identification.

• Limited resolution.

• IH propagation.

Four types of surfaces are presented starting with a theoretical case of

homogeneous propagation, and resolvable and identifiable multipaths. The above

listed effects are then added in three accumulating steps ending with the realistic

case of IH propagation, limited resolution and non identifiable paths.

b. Case Definition

The number of parameters determining the MP structure is very large

and attempting to investigate all of their various combinations is an impossible

and not a valuable effort. A number of representative cases were selected and

the parameters involved were coded into cases. A case name is composed of one

letter and four digits, e.g., C1123, which has the following meaning. The leading

character defines the type of assumptions and instrumentation used. The first
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digit defines the SVP and the second digit defines the ocean and observer depth.

The last two digits define a grid of depth range points for which the TDOAs axe

computed. A detailed description and settings of the various parameters is given

in Appendix E. .

To demonstrate the nature of the direct function surfaces three cases

were used. The first case for an ocean depth around 500 m and receiver depth of 162

m (Ullll) represents homogeneous propagation and infintely resolvable TDOAs

which axe associable with the paths for bottom depth of 503 m and receiver depth

of 162 m. The second case (Sllll) represents the same case but without the

associability of TDOA with the multipath. The third case (Cllll) represents

the same case with both the TDOA-path associability and the perfect resolution

assumptions removed. Three dimensional (3-D) surface and contour plots ofTDOA

T\ , T2 or t\ , #2 over the DR plane are plotted for each case. Regions of consistent

MP structure axe indicated by contours of bounce count over the DR plane. A

short description points to the issues of interest in the plots.

c. TDOA Surfaces

Homogeneous, perfectly resolvable and identifiable Ullll.

TDOA surfaces and contour lines for this ideal case axe shown in Fig. 3.5.

Both surfaces are monotonic and T\ can be either smaller or larger then T2. Both

delays decrease with range but opposite changes in T\ r2 result when depth is chang-

ing along a fixed range. Note that T\ is small and T2 is large close to the surface,

and the reverse is true near the bottom. No bounce count plots are presented since

the count is 2 all over the plane. Note the vanishing T\ and T2 near the surface

and the bottom respectively which causes the merging of the corresponding ACF

peaks with the main ACF lobe at r = 0. These lags are substituted by those from

multiple reflection paths in the limited resolution case. Also note that the TDOA
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Fig. 3.5. Ideal TDOA surface (Ullll)
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vanishes with range, this tends to make the effect of delay estimation noise more

significant at longer ranges. Since in addition the TDOA estimation noise increases

with range, the MP method becomes inherently limited to short ranges.

Homogeneous sorted perfect resolution Sllll modified TDOA

T\ , r2 surfaces and contours for this ideal case where association of the path and

delays is not assumed are shown in Fig. 3.6. When the TDOAs are sorted to

produce t\ and £2 as described earlier the result is t\ < £2 by definition. The

monotonocity of the surfaces is lost along the DR loci where t\ = £2 . The trend of

reduced delays T\ , r2 at long ranges has not changed. The depth still determines

the relation between T\ and r2 but not in the simple unambiguous manner as in

the unsorted case.

It is only T\ now that vanishes near the surface, when it becomes

smaller than the delay estimation resolution it will be replaced by what is here

plotted as T2. The r2 will then be replaced by the arrival lag of the next multipath,

the one bouncing from both the surface and the bottom. Since this will only happen

for the realistic receiver, the bounce count here (perfect resolution) is still 2 all over

the DR plane and is therefore not plotted. Contours of TDOA in the first 100 m

near the surface are shown in Fig. 3.7 as a reference for the later comparison to an

IH case.

Homogeneous realistic finite resolution Cllll. Fig. 3.8 shows

the resulting surfaces when the TDOA are not associable with the multipath

(sorted) and a finite delay resolution (0.5 ms) is assumed.

The main difference between this and Sllll case is the substitution

of a high order reflection time delay when time delays from simpler reflections are

not resolvable. This comes about near the surface where T\ is small and at depth

of around -176 m relative to the receiver where T\ and r2 are similar causing the
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Fig. 3.6. Modified TDOA surface, homogeneous
medium (Si 111).
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Fig. 3.7. Modified TDOA near the surface (S2251).
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Fig. 3.8. Finite resolution TDOA and bounce count (Cllll).
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replacement of r2 by the lag corresponding to the higher bounce count path (£3).

The bounce count plot is helpful in recognizing this effect which of course is also

obvious on the TDOA surface and contours as well.

C. IMPROVED FILTER

1. Concept Overview

The subject of this section is inversion of realistic IH multipath time differ-

ence of arrivals (TDOA) to source depth and range coordinates. Since there is no

closed form solution for either the direct or the inverse relation between time delays

and position, a two-step numerical solution is developed. As before the function

that computes depth and range from time delays is referred to simply as the direct

function, and the procedure that computes depth and range from time delays is

referred to as the inverse function. The latter may at times be multivalued and so

may not be a one-to-one function in the mathematical sense.

First, the direct function values of the TDOA are computed over a dis-

crete grid of target depth and range positions. This computation is done off-line.

Measured time delays are then inverted to obtain position (depth and range). This

computation must be done on-line.

In the off line computation an eigenray model is used to find the travel

times of the multiple paths between the receiver and a given depth and range

point. The travel time produced is further processed to simulate the realistic delay

estimation. Generation and processing of the TDOA is repeated for every point in

the entire DR grid. The processed TDOA data thus produced, is stored as a table

of time delay as a function of the depth and range.
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In the on line step, a set of two measured time delays is inverted to produce

depth (and range) using 2-D linear interpolation. Depth (and range) values of

three points in the direct function table, which have time delay values closest to

the measured set, are used as a basis for the interpolation. To locate these points

a unique search algorithm is developed. The algorithm takes advantage of a priori

information available in the form of the predicted target position. The prediction,

in turn, is derived from past depth and range measurements processed by the target

tracker.

The use of the eigenray model and the delay estimation simulation to

generate the direct function is described in Section C.2. The inversion process is

described in Section C.4.

2. Direct Function

The precomputed tabulated direct function of the modified TDOA over

the DR grid is computed by means of an eigenray model which is repetitively

exercised over the DR grid points. This process is described next.

a. The Eigenray Model

An eigenray model is a program that finds the multiple rays which path

between two given end points, providing their angles, path length and travel time.

Computing the TDOA of the MP structure requires very accurate computation

of the path travel time. This results from the TDOA being a difference of a few

milliseconds between travel times which are of the order of a few seconds.

In the search for an eigenray model only compact programs requiring

small computation time on readily available microcomputers were considered. This

was done in order to maintain compatibility both with the computational resources

available to this research and those available in onboard systems. Since no closed

form solution for the eigenray problem is available (recall discussion in Section
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III.B.2.c) the eigenray models are iterative in nature. The conflicting requirements

for high accuracy, limited word length and short run times are met by only a few

existing models.

Appendix F discusses the SMART ( SMall Acoustic Ray Trace, Ref.

22) selected as the eigenray model for this thesis*. The program computes the

dependence of range on initial angle and uses this relation in its iterative search

for the eigenray.

b. Generation of Direct Function Table

The SMART model produces the sound travel times for an eigenray

set pertaining to one receiver and one source. The generation of the complete direct

function table requires the following five additional steps.

1. Repeatedly exercising the model for all the source points on the discrete grid

of target depth and range (DR) positions.

2. Selecting the shortest travel time as the first arrival and subtracting it from

the travel time of the other paths. The resulting differences correspond to the

time lags of the ACF.

3. Sorting the paths in ascending travel time order. This corresponds to the

estimator logic which assumes that it is not possible to directly associate the

TDOAs with the paths.

4. Applying the resolution limitation by eliminating delays which are less then

the resolvable difference away from their preceding delay.

5. Selecting the shortest two delays and storing them as the tabulated direct

function.

The last step is in need of further elaboration. The data structure used

for the purpose of storing the direct function table is a 3-D array Q of dimension

2 x Nd x Nr indexed by £,i,j. The first array index £, selects the first and second

* The proprietary model was made available to this research courtesy of

Mission Sciences Corp., Commack, N.Y.
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delays ti]t2 (£ = 1,2). The second and third indices i and j select a point on the

depth and range grid respectively. The variables Nd and Nr are the number of

depth and range steps in the grid. Each point [i j] in the grid thus conceptually

corresponds to a four element vector called a quad (q) which has the following four

values:

qij = Dg
\i],R

g\j}Mi,J\Mhi] (3-22)

where Dg [i] is the depth implied by the depth grid index i. Rg\j] is the range

implied by the range grid index j. t\,t2 aie the two modified TDOAs given by ti =

T\ —T , and t2 = T2
—T , and stored in positions Q[l,t, j] and Q[2, i,j] ^spectively,

where To , T\ , T2 are the ordered travel times of the first three resolvable paths such

that T < Tj < T2 . Namely

t2 >t 1 . (3.23)

The vectors D
g
and Rg

are the depth and range grid scale vectors

D
g
= Dgo + AD • (0, 1, 2, . . . Nd - 1) (3.24a)

Rg
= Rgo + Ai* • (0, 1, 2, . . . NR - 1 (3.246)

with Dg0 , Rg0 the initial grid points at shallow depth and short range, and AD, AR

are the grid step sizes.

c. Interpolation

Linear interpolation of the TDOA values for points of the DR grid is

used to provide a continues TDOA function of the DR position. The values of the

ti(t 2 )
depth and range of the three quads
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which form the closest triangle that surrounds an input point D{n Rin on the DR

plane, are used to linearly interpolate the t\(t2 ) values at that point. Two linear

planes of the form

Tt = AeD + B(R + C( (3.25)

are formed in the t\DR and t2DR subspaces as follows.

Tt[iiji] = At'D1 +BtRi+Ct

re[i2J2] = AeD2 + BeR2 + Ce

relish] = AeD3 + BeR3 + Ct .

(3.26a)

(3.266)

(3.26c)

If one defines the vector Tt as

Tt = n [iiji
] ,
t( [i2J2 ] , n[hh ]

(3.27)

where £ = 1,2, then Eq. (3.26) can be written in matrix form as

Tt =

Solving for the parameters one obtains

£>i fli l" 'At'

D2 R2 1 Bt
Dz Rz 1 Ct

At D 1 Ri l

Bt = D2 R2 l

Ct D3 R* l

-\ -1

(3.28)

(3.29)

The plane parameters the t\t2 at any specific point Din R{n can be interpolated

with the formula
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ti=[A! B x C1 }-[Dtn Rin 1] (3.30a)

and

t2 = [A2 B2 C2 ].[Din i^n 1]
:

(3.306)

as shown graphically in Fig. 3.9.

D

Fig. 3.9. Linear interpolation.

The ordering of the tabulated discrete direct function according to

depth and range enables finding the triangle of closest quads by rounding the

input D in R, n to the closest DR. grid values.
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d. Implementation

SMART is a proprietary product which was obtained for this research

in a form executable on an IBM personal computer. The travel time data generated

by this program was transferred to a large mainframe computer (IBM). Here, the

rest of the processing in steps 2 through 5 and the target tracking simulations

were performed. The mainframe was selected primarily because of its good APL

interpreter and the excellent engineering graphics support provided by GRAFSTAT

[Ref. 27).

3. TDOA of IH Surfaces

Two examples of the resulting interpolated discrete direct function surfaces

are presented here. The form is the same as that used for the homogeneous cases

presented in Section B. The cases are coded using the casename code described in

Appendix E.

An inhomogeneous finite resolution nonassociable case (A2251) is pre-

sented first. The TDOA surfaces of SVP with a positive surface gradient of 0.05

sec
-1 and very high delay resolution (0.05 ms) are shown in Fig. 3.10. Note that

the DR grid only covers the first 100 m of the 500 m water column. The contour

plot of the t\ surface for the homogeneous case (case S2251) was shown in Fig. 3.7.

While the basic trends of the t\t2 surfaces are similar for homogeneous and

IH cases, the specific TDOA values differ. This can be seen most distinctively on the

contour plot for t\ which here happens to be the delay between the surface bounce

and the direct path, and is in general longer than the t\ produced by straight line

propagation. The difference results from the fact that the average speed of sound

is smaller along the IH surface bounce path than along the homogeneous surface

bounce. The bottom bounce lag <2 is less affected since the most of its path is in

the region below the observer where the speed of sound is constant and identical
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Fig. 3.10. Inhomogeneous TDOA surface (A2251).
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in both cases. The TDOA surfaces for the same medium conditions, but with a

finite delay resolution of 0.5 ms (Case 2251), are shown in Fig. 3.11. The inability

to resolve the surface bounce is clearly seen along the first depth grid line of both

TDOA plots.

4. 2-D Function Inversion

a. Overview

The inversion algorithm is an on-line transformation of a 2-D TDOA

input measurement vector into a 2-D depth and range position vector DR. The

time delays need not, and in most cases do not, coincide with points on the direct

function generating grid.

The task can be stated graphically when the 2-D transformations are

viewed as mappings between the position and delay planes. The direct function

maps constant depth and range lines (DR grid) into curved contours on the t\t2

plane; the inverse function maps a <i<2 grid into curved contours on the depth

range plane. The inversion task is thus defined as finding the intersection of the

inverse mapping t\ £2 contours and reading its DR coordinates.

Typical inverse mappings of constant t\ <2 on the DR plane were shown

in Fig. 3.12 graphically demonstrating the inversion process. Two contours corre-

sponding to t\ value of 7.5 ms and ti values of 30 and 50 ms are shown on Fig.

3.12. One intersection of the 7.5 and 30 ms contours is shown (a). Four intersection

points of the contours corresponding to t\t<i values of 7.5 ms and 50 ms are shown

(b through e). The multiple intersections indicate the inherent ambiguity of the

realistic case which was discussed in Sec B.

Typical direct mappings of constant depth and range (DR grid) into

the ti<2 plane are shown in Fig. 3.13a. These contours are computed using

ideal straight line propagation. From Eq. (2.106) it is clear that the depth is
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Fig. 3.11. Inhomogeneous and unresolvable TDOA (C2251).
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dependent on the ratio r^jr^ while the range is dependent on the weighted sum

(Dw — D )r\ + D T2. This dependence explains the straight line nature of the

inverse direct mapping. The dots along the contours of Fig. 3.13 represent quads.

The depth and range are denned by the contours and the TDOAs are the Cartesian

coordinates of the dots.

A typical direct mapping of quads for an IH realistic case is shown in

Fig. 3.13b. Note that the order of the points on the plane is lost and that the

points are restricted to the half plane defined by the <2 > *i • This results from the

definition of the modified TDOA (Recall Section B).

A cornerstone of the inversion is the fact that a quad qij is in itself

invertible in the sense that it provides the transformation

(=:)„„ -'(31)

as well as the inverse relation

(S)"-(*»
The quads can therefore be viewed in reverse, namely as defining depth and range

values over the <i<2 delay plane. Linear interpolation can be called upon again

to compute depth and range values at t^t^ points which do not coincide with any

quad.

Although the Aversion procedure seems theoretically quite simple, its

practical implementation is complicated by the following fact: the quads in the Q

array are not ordered on the t\ti plane as they are on the DR plane grid. This

is especially true for the realistic IH case as shown in Fig. 3.13b. The search for

the three interpolation quads is therefore much more elaborate than the simple

rounding procedure used for the direct interpolation. The retrieval of the quads
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here involves a search which is drastically effected by the ambiguity of the surfaces.

The search is described in the next section.

Once an appropriate quad triangle is located, depth and range axe

interpolated. If multiple solutions are found one has to be chosen and reported

as an output. The complete procedure includes the search, the interpolation, and

the ambiguity resolution. The inversion is defined here as the inversion procedure

(which is performed by the prefilter). The inversion procedure is described in

Section C.4.

b. TDOA Search

Every three direct function quads, each relating values of depth D (or

range R) to delays ti<2 can specify a plane in the Dt\t2 (or Rt\t2) space which

can be used for the inverse interpolation. In order to improve the interpolation

accuracy, only quads forming small triangles which surround the input t\t2 point

are considered. The total number of combinations of three quads out of the total

(ND x NR) quads is
'

jj
*-. This makes exhaustive search for the smallest

surrounding triangle an impossibility.

Since different triangles produce different interpolation results, succes-

sive prefilter iterations for the same ti*2 point, may produce different depth and

range values if the selected triangles are not the same. This is an undesirable situ-

ation. For example, a static target could produce changing position measurements,

causing the target tracker to respond as if the target were maneuvering.

The impact of a nonunique triangle selection is demonstrated in Fig.

3.14. Part c and e of the figure show the same four quads (91929394) grouped in

different triangles together with the resulting interpolated range. The quads are

placed on a cartesian grid for clarity purposes only and the values marked near the
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Fig. 3.14. Non-unique triangle selection.

quads (8 and 12) are the range values of the quads. Three interpolation triangles

can be selected for range interpolation for a target moving from point e to point c.

These triangles are the set (case A)

Tril: (g3 ,?2, 94)

Tn'2: (91,93,92)

or the single triangle (case B)

?™*3 (91,93,94).

Selecting Trz'l for target position e to d and tril for position d to c (case A) will

provide a continuous range interpolation. Selecting tri3 for the complete trajectory
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a to c will also yield continuous interpolation (a constant). Selecting TriZ for posi-

tions e to d followed by tri2 for d to c will result in the discontinuous interpolated

range shown in d. This discontinuity in range is troublesome for the maneuvering

target tracker.

The uniqueness problem has two aspects. One part of it results from

the unordered nature of the points on the fjij plane. This part can be overcome

by constructing unique triangles either for the whole grid at one time or locally,

when and where needed using some algorithm. An example of this problem is the

fact that every triangle that surrounds the input point can itself be surrounded by

another yet larger triangle. A simple rule of choosing the smallest possible triangles

(for example by area) could solve this problem.

The other aspect of the problem, is the inherent ambiguity resulting

from the non-monotonicity of the direct function. This ambiguity, discussed earlier,

is demonstrated here again with an emphasis on its relation to the triangle selection.

Six quads marked q\ through qe are shown mapped on the t\ti plane in Fig. 3.15a

with the corresponding depth values as the vertical axis. The folding surfaces

formed by the quads helps one understand the name Manifold by which they are

called. As expected, the non-monotonicity of the direct function results in two

possible interpolation triangles trill {^Ii92i9i) ^d tri2: (<74,<75,<?6) for an input

point-p. The problem arises because both triangles are "valid." Any attempt to

resolve the dilemma by constructing a "unique" triangular grid like the sample in

Fig. 3.15b may create wrong interpolating triangles by mixing delay values from

two separate areas of the non-monotonic function (e,g. q2,q\,qz)-

The two triangles represent two separate areas on the DR plane for

which the particular MP structure generates similar delay values t\t 2 . This is

caused by the following combined effects: the IH propagation; the limited resolution
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b.

Fig. 3.15. Ambiguous triangle selection.
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receiver; and primarily the lack of path delay association and the corresponding

assumed instrumentation logic (described in Section B). The triangles selection

mechanism that is used, has to retain the option of selecting both triangles tril

and tri2 since they are both valid for interpolation.

Attention is directed at this point to the fact that while tril and

tri2 axe partially overlapping in the TDOA plane, they are disjoint in the DR

plane. This difference is significant and is used later to assist in the selection of

the triangles.

An algorithmic solution to the general problem of uniquely selecting

a triangular grid over a set of unordered points in a plane does exist. Surprisingly

enough, it was developed only recently (1975) by Shamos [Ref. 28]. The solution is

elaborate and involves a geometric construction but it does guarantee unique trian-

gles. However it does not solve the above mentioned problems of eliminating valid

and creating nonvalid triangles. The Shamos solution is therefore not applicable

for the problem of non-monotonic function inversion and a different new approach

had to be devised here. This approach is described next.

c. DR Search

The difficulties encountered in selecting triangles resulted from the

unordered scattering of the quads in the TDOA plane (Fig. 3.13b). On the DR

plane the quads are ordered on the Cartesian grid. Constructing a unique disjoint

set of triangles which exhaustively covers the depth range plane ; s trivial and can

be done by splitting each rectangle of the DR grid into two triangles using parallel

diagonal lines as shown on Fig. 3.16. The set of triangles thus formed is defined

as the DR triangles space. A key idea in the search is to consider only triangles
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Fig. 3.16. Unique valid DR triangle set.

in the delay plane that arise from the mapping of triangles from the DR triangles

space. This delay triangles space has the following distinct advantages:

1. The set is unique.

2. The set is completely valid. That is, the triangles are locally the smallest and

will not be constructed by erroneously grouping quads from disjoint areas of

the direct function.

3. The set is sufficient. That is, the option of choosing all valid TDOA triangles

is maintained.

4. The search space size is significantly reduced. The number of possible triangles

is reduced from '

—

d

v
r ''

to 2 • Ng • Nr . This is a reduction from order 0(n\)

to order 0{n).

5. Construction of the set is trivial and does not require computation.

6. The set facilitates an efficient structured search. The search for the surround-

ing TDOA triangle can utilize the structure of the underlying DR grid in an

effective binary type search.
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Viewed in the context of the graphical statement of the inversion prob-

lem (Fig. 3.12) the search now is for the DR triangle that surrounds the intersection

point of the t\ , £2 contours of the inverse function on the DR plane. The existence

of a solution is conditioned by the monotonicity of the direct function over the

region of the triangle which dictates that the DR grid be made smaller than the

minimum monotonic region.

Since the DR grid of quads is Cartesian, searching for a minimum rect-

angle that contains the desired triangle is more convenient. After the surrounding

rectangle is found the specific triangle(s) can then be located by examining the two

triangles that make up the rectangle.

d. Localized Search

Finding the particular triangle in the total set of 2 • Nd • Nr grid points

that surround the t\t2 input measurement point requires further searching. The

test to see if the point is within a triangle,* involves some computation and the

search space, though reduced can be still very large. Hence the possibility of ex-

haustively considering all the triangles is not desirable. A binary-type search made

possible by the DR ordered grid structure can reduce the average computation

load. In addition it can focus the attention on the area where the solution is most

likely to be found.

A place at which to start the search (a root) is provided by the target

tracker predicted position. If a target state vector has already been established,

then the next target measurement is most likely to be found in the vicinity of the

predicted DR position. Starting the search with the rectangle that surrounds the

predicted position is only the natural choice.

The test, referred to as the inversion test is described later.
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The Q array indexes required to retrieve the quads associated with

this rectangle are produced, as they were for the direct function interpolation,

by rounding to the closest DR grid values. If the rectangle that surrounds the

predicted point also surrounds the ti^ point the search has produced the required

triangle and it terminates. Upon failure, however, the search has to continue over

a growing and more distant set of DR rectangles until a surrounding one is located.

This local search ensures that the solution closest to the target will be found first.

This significantly reduces the ambiguity inherent in the MP inversion.

Two different search strategies were designed and implemented for this

purpose. The first, titled MEA (mean's ends analysis) is a directed search strategy

common in artificial intelligence applications. The second method referred to as

local search algorithm (LSA) is a breadth first type search performed in tiers of

growing distance from the predicted point.

The MEA method performed very effectively for monotonic direct

functions but failed in non-monotonic cases. The LSA algorithm performed very

well for all cases and the computational load, usually associated with breadth first

search, was reduced by an innovative dual phase evaluation algorithm. A brief

description of the local search algorithm is presented next and a more detailed ex-

planation of its components is presented in Appendix G. The system block diagram

is shown in Fig. 3.17. Note the feedback of the predicted position as a root for the

prefilter's local search.

e. The Local Search Algorithm (LSA)

Given the TDOA measurement point the goal of the LSA is to produce

an interpolation triangle that surrounds the intersection of the inverse function t\t2

contour lines. The search commences in a DR rectangle where the solution is most

likely to be found, namely at the predicted target position. The search progresses
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Fig. 3.17. System block diagram.

by increasing the rectangular search area until a solution is found or until the

dimensions of the area have reached a specified maximum limit. Upon termination

(success or failure) the algorithm reports the number of solutions found, the size

of the area actually searched and the triangles found (if any).

The localized search is a part of the overall inversion algorithm. The

inversion initiates and uses the outputs of the search to produce the desired mea-

surement depth and range. The interface between the inversion and the search is

given in Table 3.1.

A numerical analysis procedure, originally developed for finding zeros

of complex functions (Hamming [29]) was modified to apply to the search. One test

and two recursive procedures are used in the LSA, they are the inversion test the

outward and the inward searches. The inversion test examines a given rectangular

on the DR grid to find out if a solution may exists in it. The outward search
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TABLE 3.1

LSA INTERFACE VARIABLES

LSA input:

£1*2 Delay measurements (input point).

DR prd. Target predicted position, depth range.

Max size Maximum search area size ,depth range.

LSA output:

Num. The number of triangles found.

Area size The size of area searched before

the solution was found.

Solution The quad triangles.

examines the current (input) rectangle using the inversion test. As long as the test

fails (no solution in the current area) and as long as the maximum search area has

not been reached, the search area grows outward. If the maximum area is reached

and a solution was not found a failure is reported. *

The inward search attempts to locate a solution inside a given rect-

angular area. It starts by performing the conditional inversion test on the entire

area. If the test succeeds the area is divided to four quadrants and a solution is

searched for in each quadrant by means of a recursive call to the inward search.

The recursion terminates either when a 1 x 1 rectangle is reached, or when the

test indicates that a quadrant does not contain a solution. If a 1 x 1 rectangle is

formed, an additional surrounding test is performed on the two DR grid triangles

that comprise that rectangle to determine which if any of them contains a solution.

All the triangles thus found are reported as outputs to the inversion procedure for

further processing.

The search as a whole is thus completed. The surrounding triangles

closest to the predicted target position are reported to the inversion procedure

143



www.manaraa.com

for the further processing which is discussed next. The local search algorithm

is demonstrated in Fig. 3.18. Fig. 3.18(a) shows two iterations of the outward

search initiated at point p. Fig. 3.18(b) shows three iterations of the inward which

produce two solutions corresponding to the two intersections of the tj<2 contour

lines. A more detailed description of the LSA is presented in Appendix G including

a detailed pseudo code description.

f. The Inversion

The inversion procedure performs the prefilter operation of transform-

ing the input measurements TDOAs to depth and range measurements. It uses the

direct function table and the local search algorithm described earlier. The inversion

performs the following five tasks.

• Initialization of the search

• Interpolation

• Ambiguity resolution

• Failure handling

• Performance monitoring.

Each of these is described in more detail below.

(1) Initiation of the Search Process. The process is initiated by

setting up the first lxl search rectangle and starting the outward search. The

initial rectangle is set by quantizing the target predicted position to the closest DR

grid position.

(2) Interpolation. Once the appropriate three quads are located.

the depth and range need to be interpolated. Linear and bilinear interpolations

were used.
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Linear interpolation is done in much the same way as the time

delay interpolation is done. The interpolation equations are similar to those de-

scribed earlier for the direct function interpolation. (See Section C.2.c.)

A linear plane in the depth (range) t\ , t2 space of the form

D = Adti + Bd t2 + Cd (3.33)

is defined by the three quads £»i,Ji; qi2j2 ] 9*3js where q,j is defined in Eq. (3.22)

and the subscripts index the three points of the selected triangle on the original

depth range grid. The equations for the plane coefficients in the depth tit2 space

are

D[idi] = Ad • ti[iiii] + Bd • t2 [iiji] + Cd

D[i2h] = Ad • h [i2j2 ] + Bd • t2 [i2J2] + Cd

D[i3j3 ]
= Ad -ti [i3j3 ] + Bd • hlkh] + cd

which takes the matrix form

(3.34)

Ad

Bd

Cd

h[iiji] h[iiji] 1

*l[*2J2] t2 [i 2j2 ] 1

ti[i3J3] t2 [i 3j3 ]
1

D[iiji]

D[i 2j2 ]

D[i 3j3 ]

(3.35)

from which the parameter vector (AdBdCd)T can be solved. The depth (range) at

the specific tim t2m measurement point can be interpolated as

D = (AdBd Cd) (U t2 if . (3.36a)

And similarly for range

R = (A r B r Cr )-(t lm t2m I)" (3.366)

with A rB rCr solved by an equation like Eq. (3.35) with /?[i,j] substituted for
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Bilinear interpolation was tested as well. The bilinear interpo-

lating surface [Ref. 30] applied to depth interpolation takes the form

D = A4 • h + Bd • t2 + Cd • h • <2 + Dd . (3.37)

The coefficients Ad,Bd,Cd,Dd of the bilinear interpolation can be determined by

solving the matrix equation

h [hji ]

'

h [hji ] <i [iiji ]
-

1

2 [hji ]
1

t\ [*2h ]
<2 fah 1 h [hJ2 ]

• *2 [l2J2
]

1

*l[*3j3] *2[»3j3] *l[*3i3]-*2[»3J3] 1

- *1 b'4i4 ] *2 [^474

]

*1 [«4J4 ]
' *2 [«4i4

1

1 -I

rAd] -D[iiJiV

Bd D[i2h]
cd D[hjz ]

IDdl lD[iJ4 }l

(3.38)

While linear interpolation uses a triangle formed by three quads, the bilinear inter-

polation requires a square of four quads. The closest square, however, is naturally

produced by the local search algorithm.

(3) Ambiguity Resolution of Multiple Solutions. When multi-

ple solutions exist in the search rectangle a choice is made among them by interpo-

lating all of the candidate solutions and selecting the one closest to the predicted

position (point S2 in Fig. 3.18). For a single linear measurement and a normally

distributed measurement noise and prediction error, this solution will be the more

likely one. Realistically the measurement is nonlinear, and the two measurements

(depth and range) do not have the same variance. An alternative more rigorous

choice would imply extensive computations that are expected to produce practically

the same results. A potentially more rigorous approach to the overall ambiguity

problem is discussed in Chapter Six.

(4) Failure Handling. A search can terminate without a solution

for one of the following two reasons:

1. The measurement noise resulted in placing the t\ t2 input point outside of the

maximum search area or even outside the complete DR grid.
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2. The search area reached the maximum size without covering the actual mea-

sured source position.

When an inversion triangle is not found, the predicted target

position is returned by the inversion procedure as an output. This can be thought

of as a lack of innovation in the current measurement, and effectively reduces the

sampling rate of the system. The tracker performance degrades as a result. When

the search failure occurs infrequently (low failure rate) only the response to fast

target maneuvers is hampered. Frequent failures (high failure rate) can lower the

effective sampling rate of the observer below the Nyquist rate required to sample the

target's dynamics. This drastically reduces the quality of the tracking. Frequent

failures are unfortunately fed back in the form of search areas centered around the

wrong target position. This in turn increases the chances of failure and eventually

leads to a complete loss of tracking. A large maximum search area limit will reduce

this effect, but requires increased on-line computation. The maximum search area

limit is thus a key system parameter which needs to be optimized for the prevailing

noise conditions and the available computational resources.

In experimental simulation of the MP tracking system the overall

effect of the inversion failure was surprisingly gradual and meaningful tracking of

maneuvering targets was demonstrated with up to a 50% failure rate. The robust

performance can probably be attributed to a more-or-less symmetric delay error

distribution. In such cases the elimination of the extreme measurement errors

at either ends of the distribution caused by the failure does not affect the mean

depth and range values. Therefore, as long as the tracking errors are not large and

the search area is centered properly around the predicted position, the impact of

eliminating extreme delay measurements is mild.
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(5) Prefllter Performance Monitoring. The inversion proce-

dures also monitors the performance of the search by averaging the number of

solutions and the search area size. The averaging is done by means of an auto-

regressive lowpass filter. The average solution count should ideally be one, a lower

value indicates search failures, while a higher count indicates ambiguity. The search

area average helps optimize the maximum search area and is a measure of the load

associated witja the search. It also provides a good indication of the effects that

delay measurement noise has on the search. The solution count and the area size

proved to be very useful in the overall system performance evaluation.

g. 2-D Function Inversion Summary

A 2-D function inversion algorithm was devised, capable of translating

realistically estimated MP TDOA generated by an IH medium to source depth

and range position. An eigenray acoustic model identifies and precomputes the

the travel time of rays to the receiver from hypothetical targets placed at the

coordinates on a depth range grid. The travel time is transformed to TDOA using

an assumed, ACF based, realistic receiver and delay estimation instrumentation

and stored in a tabulated direct function. The inversion is performed by inverse

interpolation over three or four relevant points in the grid located by means of a

special local search algorithm (LSA). A total of three prefilters were programmed.

They were numbered with prefilter numbers (PFN) 4 through 6 (see Chapter Two,

Section E). Prefilters PFN-4 used linear interpolation and the MEA search; PFN-5

used linear interpolation and the LSA. PFN-6 used bilinear interpolation and the

LSA.

The procedure was carefully evaluated and the detailed evaluation

scheme and results are presented in the next chapter. In general the performance
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was good indicating that the procedure is suitable for incorporation into a multi-

path tracking scheme.
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IV. IMPROVED PREFILTER PERFORMANCE

An intensive evaluation of the prefilter was performed and the results are

presented in this chapter. Section A discusses the motivation for the evaluation

and some of the expected results. Section B presents the evaluation scheme. Section

C contains a detailed presentation and analysis of the results.

A. MOTIVATION

The prefilter forms a central part of the overall MP target tracking system.

Examining its performance is a necessary prerequisite to analysis of the overall

system. The simulation has to provide all the realistic conditions under which the

prefilter is expected to operate as a part of the MP tracker. In addition, the sim-

ulation conditions have to be separately controlled in order to isolate their impact

on the prefilter. The effects of the following issues on the prefilter performance are

investigated:

• Medium effects.

o IH propagation,

o Propagation loss,

o Bottom depth errors.

• Delay estimation.

o Delay noise bias.

o Noise range dependence.

• Prefilter design

o Grid size.

o Interpolation errors.
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The overall performance of the prefilter is expected to vary over the depth and

range grid. This is due to the range dependence of the noise and the nonlinearity

of both the inversion and the time delay estimation algorithms. To separate the

effects the evaluation is performed over the entire 2-D grid in two steps. In the first

step a range independent TDOA noise is assumed; in the second step the noise is

range dependent.

The above nonlinearities give rise to two range bias errors. The first is a range

underestimation bias which results from the overestimated TDOAs produced by

the nonnegative effect (see Appendix D.) The other is caused b}* tl e delay to

position transformation, which is inherently nonlinear. This second bias tends to

overestimate the range, and is discussed next. The effect of both biases on depth

is dependent on the particular MP structure.

An example of the effect of the nonlinear TDOA to range inverse transforma-

tion, is shown in Fig. 4.1. A section of the range dependence on t\ for a constant

value of <2 is shown in Fig. 4.1a. A zero mean normal input noise distribution

(Fig. 4.1c) is transformed to an asymmetric and non zero mean range distribution

(Fig. 4.1b). The typically negative value of ^^ leads to an overestimated range.

This can be seen in Fig. 4.1b where the actual range is 1855 m and the mean is

2050 m.

Circles representing contours of a joint distribution of t\t2 measurements*

were transformed to the DR grid. The results, shown in Fig. 4. Id demonstrate the

asymmetry of the DR measurement noise.

The inversion bias was studied by Moose [11] for the idealized homogeneous

case. The combined opposing effect of the inversion and the nonnegative delay are

cr
tl = <Jt 7

',t\ and t 2 independent.

152



www.manaraa.com

a LINEARIZED INVERSE FUNCTION b. RANGE DISTRIBUTION

.

»

i

2
•—'o

o
9o

1 1. -- L I 1 ; ^^~"—~-

0.1 0.2

DELAY T1 [SEC]

C. DELAY DISTRIBUTION

0.1 0.2

DELAY [SEC]

0.2

q
c«i

fc

^ ^
2 -
aa _
>•

—̂ o
I -
s
o
e
c

<rt _ /6

- /
o - T

0.J

200C 30CO 4330

RANGE [Mj. MEAN I. ACTUAL T

d. DISTRIBLmON

0--125U. R-2000U

200&*4GE [U]

D--250U, R-4000U

2Q10

Fig. 4.1. Nonlinear inversion bias.
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examined here for the IH case. Means to compensate for these biases are discussed

as well.

B. THE PREFILTER EVALUATION SCHEME

The evaluation scheme shown schematically in Fig. 4.2 involved the following

steps.

evaluated reterenoe

case case ~

smart noise smart

V
rcvr

+ j

rcvr

-

S'? 9

q INVERSION DR.
I

1

ERROF

AVRa

1

Fig. 4.2. Inversion performance evaluation.

1. Generation of the reference and evaluated direct function tables using the

SMART program and the instrumentation model (see Chapter Three.). Two
separate sets of conditions are used: the "actual" (the reference case or Re-

fcase) and the "assumed" (the evaluated case or Evalcase). The conditions
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such as SVP bottom depth grid size etc. may be different for the Refcase and

the Evalcase. It is the effect of these differences that is being evaluated.

2. Generation of the delay measurement noise for every point in the grid and

adding it to the delays <i , t2 , of the (reference) TDOAs.

3. Simulation of the noisy target predicted position Dp,Rp by adding depth and

range noise to every point on the grid values Dm , ifyj] . This supports investi-

gation of the search algorithm in an open loop mode.

4. Transformation of the measured ti,t2 into depth and range measurement

Dm , Rm via the inversion procedure (prefilters 5 or 6) using the evaluated

direct function (i.e., the assumed ocean) and the noisy reference point.

5. Comparison of the measured Dm ,Rm to the reference Dui,Rf\ values and

generation of the errors

Derr0r = Dm - D[i\

•terror == -H-m -^UJ

6. Repeating the above for all the points in the DR grid. Recording for each point

the errors along with the search performance measures (number of solutions

and search area size).

7. Averaging the output over small local 2-D windows to provide an estimate of

the local mean and variance and a local prefilter performance measure.

Recall that a failed search will return the reference point as the inverted out-

put. When noise is not added to the reference point this will produce a zero error

which is not a precise account for the event. This will become evident from some

of the results.

C. EVALUATION RESULTS

The evaluation was performed about 150 times for a variety of conditions. The

results of eight summary cases are presented next. The cases investigate the effects

of the following issues:
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• Depth range grid size.

• Linear versus bilinear interpolation.

• TDOA bias error.

• Acoustic medium inhomogenuity.

• Range independent TDOA noise.

• Range dependent TDOA noise.

• Range dependent prediction point reference.

• Bottom depth error.

Each of the next eight subsections describes one evaluation. Each subsection

describes the purpose of the simulation experiment and the expected results, the

actual experimental results and analysis of the evaluation, and conclusions. The

output plots include:

• Local average of depth and range errors.

• Local average of inversion error STD.

• Local average of the solution count (this monitors the performance of the

search algorithm.)

• Average error as function of range (range error profile). This is generated by

taking error averages over all of the depth points for a given range. The error

profile is normalized as marked on the plots.

1. Effects of Grid Size

The purpose of this Run was to examine the effect of grid size on interpo-

lation error and optimize the grid for the intended use. The key parameters used

are given in Table 4.1.

The depth and range results of the inversion with linear interpolation over

the medium density DR Evalcase grid (Sllll), are compared to the exact depth
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TABLE 4-1

INTERPOLATION EVALUATION GRIDS

Grid density High Medium Low

Casename S1155 Sllll S1144

Initial depth [m] 160 160 160

Depth Step size [m] 10 50 100

Number of steps 11 11 6

Initial range [m] 500 500 1000

Range step size [m] 250 500 1000

number of steps 99 25 13

and range values of the high density DR Refcase (S1155) grid. The results are

shown in Fig. 4.3. The maximum errors were 16 m in depth and 100 m in range.

An interesting point was revealed by these plots. The interpolation er-

rors depend on the degree of curvature in the direct and inverse functions. The

curvature is very small at long ranges making the interpolation error inversely

proportional to the range. This is clearly seen in Fig. 4.3. The significance of

the interpolation errors is greater at short ranges than at long ranges since the

other inherent MP tracking errors are reduced at short range. The grid size should

therefore be optimized for the short range performance.

A more coarse grid (Evalcase Si 144) was evaluated using the medium

density grid as the reference (Refcase Sill). The results shown in Fig. 4.4 reach a

maximum depth error of 20 m and a maximum range error of 200 m.

Conclusion: The grid size depends primarily on the direct function. A

more curved and more rapidly changing function will require a finer grid to maintain
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Fig. 4.3. A 50 x 500 m DR grid interpolation error.

158



www.manaraa.com

DEPTH ERROR

\
p^G£ [100OXM]

10

RANGE ERROR

r^G£ [1000*M]

10

Fig. 4.4. A 100 x 1000 m DR grid interpolation error.
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low errors. For the nominal homogeneous case, in water depth on the order of 500

m and ranges up to about 20 km a direct function Q grid size of 2 x 20 x 40 will

be required. This is a very reasonable size which is easily within the capability of

current onboard microcomputers.

2. Bilinear Interpolation

The purpose of this evaluation was to compare the performance of linear

and bilinear interpolation. The key parameters used are the same as those used for

the medium grid evaluation (See Table 4.1) with S1155 as the Refcase and Sllll

as the Evalcase.

Error surface for the bilinear interpolation are plotted in Fig. 4.5. The

difference between the results of the two interpolation methods is small (compare

to Fig. 4.3). The smaller depth errors in the linear interpolation result from the

fact that the triangular area of interpolation is smaller than that of the rectangular

area used by the bilinear method. The bilinear interpolation provides a smoother

interpolation but has a larger absolute error.

Conclusion: Both linear and bilinear interpolation produce satisfactory

results. The error of the linear method is slightly smaller. The choice of which

method to use can be based on implementation considerations. Linear interpolation

was used for most of this study.

3. The Effects of Acoustic Medium Inhomogenuitv

The purpose of this evaluation run was to examine the effects of the

medium inhomogenuity. A SVP with a positive surface gradient of steepness that

is characteristic of many practical problems (g = 0.05 sec
-1

.) was used as the ref-

erence case (A2251) and the TDOAs were converted to depth and range assuming

a homogeneous medium (straight line propagation, Evalcase S2251).
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Fig. 4.5. Bilinear interpolation error.
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Depth and range inversion errors are shown in Fig. 4.6 as surfaces and as

contour plots. Very large errors are developed especially at long ranges. Observe

that at a range of 12 km the range error is 4 km and the depth error is 150 m.

The trend of the error is expected and is caused primarily by the change in

the surface bounce path. Fig. 4.7 shows a comparison of an IH and a straight line

propagation where t\ and <2 f°r both cases are the same. The path T\ is longer

(curved instead of straight) and includes portions with average speed of sound

lower than in the homogeneous case. The resultant delay ti given by T\ — To, is

longer.

When interpreted as if it were the result of straight line propagation it gives

rise to deeper depth and shorter range estimates.

Conclusion: The inhomogenuity of the ocean medium has a gross effect

on MP propagation and position measurement. Compensating for this effect is

mandatory in order to achieve meaningful depth and range measurements.

4. Finite Delay Resolution

This case examined the effect of finite delay resolution combined with the

effect of the inhomogenuity. The cases used were Refcase C4261 for which the

assumed delay resolution is 0.5 ms and Evalcase S4261 for which the assumed

delay resolution is perfect and the assumed SVP is homogeneous.

The errors are similar in nature to the errors produced by the previous

run. The main difference is along the surface as shown on Fig. 4.8. This differerce

results from the fact that in the finite resolution case the surface bounce is not

resolvable along the first depth line of the DR grid. The first depth grid point is

located at a depth of 2m from the surface*. The delay between the direct path and

* The observer depth is 162 m and the grid initial depth is + 160 m relative to

the observer.
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Fig. 4.6. Effect of medium inhomogenuity (A2251).
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the first surface bounce is smaller than 0.5 ms and therefore is not resolvable. As a

result the modified TDOA vector t\ , *2 is comprised of T\ , t$ here (instead of T\ , T2).

This corresponds to a physically different multipath configuration*. Similar effects

were demonstrated near the ocean bottom and along the DR loci where t\ = £2-

Note also that the magnitude of the error over the complete DR grid is

larger than in Fig. 4.6. This results from the steeper surface gradient of 0.105

[sec
-1

]
(SVP 4 in Appendix-E) used here compared to the 0.05 [sec

-1
]
gradient

used in Fig. 4.6.

Conclusion: The finite delay resolution has a significant effect on the

TDOA structure. Accounting for the specific response of the delay estimator to

the loss of resolution is mandatory, especially for targets near the ocean boundaries.

5. Delay Estimation Bias

The purpose of this evaluation is to examine the effect of a constant TDOA

offset. This was done as a scaling run and supported the independent evaluation of

the tracker. It allowed nominal transformation of the predicted delay noise to depth

and range measurement errors. Since this is a nominal scaling, the homogeneous

case (S3252) is used both as the Refcase and the Evalcase. A T\ offset of 1 ms is

used as TDOA bias.

The resulting error is shown on Fig. 4.9 and reaches levels of up to 4 km

in range and 80 m in depth at range of 25 km. With actual range in the vicinity

of 12 km the range error is 1 km and the depth error is 40 m.

Conclusion: If the tracker operates over a range of up to 12 km and

TDOA noise of the order of 1 ms is assumed, the range error STD can be expected

to lie between a few hundred meters and about 1 km. As was shown in Chapter

Two, such errors can be handled by the MM target tracker.

* See Chapter Three, Section III.B.5.
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6. Effects of Range Independent Noise

The effect of a stationary (range independent) random noise on both the

variance and the mean of the DR measurement was examined. The Refcase and

Evalcase were both taken as the homogeneous S4261. A stationary, range indepen-

dent ((p = 0), see Eq. (3.3)) TDOA noise with STD of 1 ms for both U and t2 was

used. The local averaging window for the plots was 3 x 7 in grid step units.

Surface plots of locally averaged STD of the depth and range errors are

shown on Fig. 4.10a. The depth and range errors were averaged over depth to

provide the range error profile which is shown on Fig. 4.10. The profiles are

normalized to 100 m in depth and 1 km in range.

The maximum error is consistent with the earlier scaling results performed

using the constant TDOA offset (Fig. 4.9). Contours of locally averaged number

of solutions (Fig. 4.10d) indicate frequent failure of the inversion near the deep

end of the grid*. This is caused by the TDOA values produced from the noisy

measurements. The noise drives the TDOA measurements out of the interval of

TDOA values covered by the precomputed direct function. Increasing the area

covered by the DR grid will solve part of the problem and reduce the frequency of

failures.

The results of a similar case with TDOA error STD of 5 ms are shown in

Fig. 4.11. This figure shows larger errors and failure of the algorithm at a shorter

range (7 km in Fig. 4. lid). Note that the term failure indicates only that the

effective sampling rate is reduced by half at ranges over 7 km (recall the comment

at the end of Section B). More frequent failure is the reason for the superficially

* The frequency of failure is 50 % along the solution contour line since the
line separates the regions between and 1 average solutions. The contour line does
not imply that there are no solutions at ranges longer than those indicated by the

contour.
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lower error values at the long range. The effect of the reduced sampling rate on

the overall system is investigated in Chapter Five.

Conclusions: Errors with STD on the order of 30 m in depth and 0.5 km

in range are expected at ranges around 10 km as a result of a range independent

TDOA noise with STD of 1 ms. For TDOA noise with STD of 5 ms similar depth

and range errors are expected at a range of 5 km. As shown in Chapter Two these

errors can be handled by the target tracker. The inversion algorithm does fail at

long ranges if the noisy delay measurements fall outside of the interval covered by

the precomputed direct function.

7. Effects of Range Dependent Noise

The response of the inversion of TDOA which is contaminated by range

dependent noise was examined here. Range dependent noise was added to the

target predicted point as well. Case S4261 was used both as the Refcase and the

Evalcase. Range dependent noise (Eq. (2.96) NT = 1, P = 1), with tu t2 STD of

0.2 ms at initial range of 500m, was used. The TDOA noise STD varied linearly

with ranges between 0.2 ms to 4.8 ms over the range interval of 0.5 to 12.5 km.

This noise level resembles the one produced by the more elaborate noise model

(NT=2) for a SNR of 60dB and p = 2 which is a fairly typical case. Predicted

position DR noise was varied from 0.4 to 250 m in depth and from 10 to 6.25 m in

range proportional to the second power of range (p& = 2).

The resulting error profile is shown on Fig. 4.12 along with the contour

line for the number of solutions. Note the sharp range dependence of the inversion

error STD on range. Also note that for the practical case used here a sharp "knee"

develops around 12 km (Fig. 4.12c). Beyond this range the error grows very

rapidly. This close to second order dependence of the DR measurement noise on

range is what motivated setting the parameter pj, to 2. The maximum area size
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was set to 20 x 25 grid points. This explains why the addition of the DR noise did

not degrade the performance significantly. Performance degradation as a result of

smaller maximum area size is demonstrated in Chapter Five.

Note that the normalized range STD in Fig. 4.12b at a range of 9 km is

approximately 0.3. This implies a range error STD of 3.6 km (considering the 50%

failure rate and the 6 km normalizing factor). This value will be useful in Chapter

Five in setting the maximum area size.

A second interesting observation is the failure along the first range grid

line. This is caused by the noise which drives the "measured" TDOA outside of

the interval covered by the precomputed direct function. Recall however that the

contour line in the number of solutions plot indicates only that the average failure

rate is larger than 50%. Similar phenomena were noticed in most simulations along

the edges of the DR grid.

Conclusions: The inversion varies with range even for a range indepen-

dent TDOA noise. The error becomes even more range dependent when the TDOA

noise itself is range dependent. Beyond 15 km very large DR measurements develop

even for moderate initial range delay estimation noises.

8. Effect of Bottom Depth Error

The purpose of this last inversion evaluation was to quantitatively examine

the effects of an erroneous bottom depth on the target depth and range errors.

Refcase S1256 for which the bottom depth is 513 m was compared to Evalcase

S1556 for which the bottom depth is 550 m. A homogeneous ocean, perfect delay

resolution and no noise were used here in order to isolate the effects of the erroneous

bottom depth. The inversion was done, however, using the numerical algorithm

(prefilter-5).
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The effect of this relatively laxge bottom depth error (37 m which is 7.2%

of the total ocean depth) is shown on Fig. 4.13 for short and long ranges. While

the resulting range error reached a level of 3 km at 18km, it was limited to 1.5 km

for ranges smaller then 10 km.

The trend of the error surfaces is explained as follows. The actual (Refcase)

ocean produces a bottom bounce TDOA which is shorter then the one produced for

the same DR point by the assumed (Evalcase) ocean. This smaller t2 is interpreted

by the inversion ( which is done using the Evalcase) as the TDOA of a deeper target

at a longer range. The region of no inversion solution at ranges in excess of 18 km

resulted from the Refcase £2 TDOA being smaller then the minimum £2 in the

precomputed Evalcase Table.

Conclusions: Incorrect bottom depth assumptions can give rise to large

errors in MP position measurements, primarily at long range. The trend of the

error is consistent with other MP tracking error sources in that it increases with

increasing range. This error tends to limit practical tracking in shallow water to

ranges below 20km.
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D. SUMMARY OF PREFILTER EVALUATION

The results of these experiments can be summarized as follows.

1. The effect of the inhomogenuity on the MP position measurement is severe

and was clearly demonstrated.

2. The depth and range measurement errors are strongly dependent on range

(proportional to 2nd to 4th power of range depending on SNR and propagation

loss).

3. Errors with STD of up to 40 m in depth and 1 km in range can be expected

for ranges of about 7 km and typical targets with SNRo = 60 dB if spherical

spreading is assumed (p = 2). Above 12 km the errors increase sharply with

range for the typical shallow water case studied here.

4. The inversion algorithm fails under very noisy conditions and around the edges

of the DR grid. The failures in these cases are legitimate since the TDOA input

values are not representative of points in the DR grid.

5. Errors will result if account is not taken for the loss of delay resolution. In

particular one needs to model the response that is expected from the specific

type of delay estimator.

6. The algorithm is sensitive to DR grid step size only at short ranges. In general

the depth and range step sizes should be tailored to the fluctuation of the

specific direct function used and the accuracy desired at short range. Grids of

10 to 50 m in depth and 250 to 500 m in range were used in most of our work.

7. The MP tracking is sensitive to bottom depth errors primarily at long ranges.

At ranges below 10 km a low percentage error in bottom depth would produce

about twice that percentage error in range.
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V. OVERALL PERFORMANCE EVALUATION

A. INTRODUCTION

In this chapter the overall performance of the MP tracking system is evalu-

ated. A total of seven simulation runs which are divided into into three groups

are presented. The runs are numbered 6 through 12 following the sequence of the

runs begun in Chapter Two. Runs 6 and 7, represented in section B, demonstrate

the functional performance and limitations of the integrated prefilter and tracker.

Runs 8 through 10, described in Section C, were designed to investigate the effects

of medium inhomogenuity and the ability of the new prefilter to compensate for

it. Runs 11 and 12, covered in Section D, examine the sensitivity of the IH com-

pensation to the accuracy of SVP measurement. Conclusions are summarized in

Section E.

The results are presented in a format similar to the one used for the previous

runs and case evaluations in Chapters Two and Four. In each section the goal

of the runs and the key parameters used are described first. Then the analysis

results are presented. The detailed parameter values for all of the runs is given in

Appendix E.

B. INTEGRATED SYSTEM FUNCTIONAL PERFORMANCE

The overall performance of the prefilter integrated in a closed loop with the

target tracker was demonstrated using a maneuvering target. The target initially

has an outgoing speed (range rate) of 6 m/sec and it makes a sharp maneuver at a

range of 9 km turning back towards the receiver at the same speed. Realistic noise

(noise type 2, SNR = 50 dB and p = 2) is used to investigate the overall
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capability of the system through the maneuver. A constant speed of sound is used

both as a reference and evaluation medium (case Sllll). This is done in order

to concentrate on the functional performance of the integrated system when the

measurements are noisy.

The key issues investigated here relate to the inversion method. These issues

are the ability of the local search algorithm (LSA) to find a valid surrounding

triangle and the effects that a reduced effective sampling rate has on the target

tracker (recall the discussion of inversion failure in Chapter Three).

Results of Run 6 are shown in Fig. 5.1. The maximum search area size was

± 200 m in depth and ±3.75 km in range around the predicted target position

(a rectangle of 8 x 15 DR grid units for case Sllll). Fig. 5.1 shows that the

overall tracking performance is good. The range tracking error reduces to around

300 m at the 14* h minute after initialization is completed. The realistic TDOA

noise simulated here increases rapidly with range. This is clearly evident in Fig.

5.1 (note the two resulting range measurements errors around the 13th minute).

The system tracks well through the maneuver with an effective sample rate as

low as 40%. This is indicated by the average number of solutions which is close

to 0.4 in Fig. 5. Id. Note that the prefilter uses the maximum search area size

during the 17
tA minute as indicated by the normalized size in Fig. 5. Id (actual

searched area / maximum area size). Some ambiguity is indicated at shorter ranges

where the solution count is larger than 1. Thi.° ambiguity affects mostly the depth

tracking as can be seen in Fig. 5.1b. This effect is expected when one reviews

the TDOA contours of case Sllll which is used here (see Fig. 3.6). The bearing

channel tracking and the resultant XY plot of Run 6 are shown for completeness

in Fig. 5.2.
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Fig. 5.1. Run-6: IH tracking of a maneuvering target.

179



www.manaraa.com

BEARING:-ACTUAL +MEASURED VESTIMATE x-Y: OBSERVER X ACTUAL • MEASURED + ESTIMATED 7

4000

TIME [WIN] X AXIS [M]

Fig. 5.2. Run-6: Bearing and XY plot.

The same scenario was used in Run 7 with a smaller maximum search area size

of ±125 m in depth and ±2.25 km in range (a rectangle of 5X9 in the Sllll grid).

The results, shown in Fig. 5.3, clearly indicate the failure of the system to track the

target through the maneuver. The system loses track when the range tracking error

reaches 2 km (in the 20 t/l minute). At this time and range most of the measurements

are outside of the maximum search area around the predicted position. This leads

to a constant use of the maximum search area size and eventually to a complete

failure (over 807o of the iterations).

The range measurement error STD for Runs 6 and 7, was estimated using the

inversion performance evaluation scheme described in Chapter Three. The typical

STD for similar TDOA noise at around 9 km was 3.6 km*. The conclusion is

* Recall the discussion in Chapter Four, Section C.7
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Fig. 5.3. Run-7: Failure due to reduced search area size.
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therefore that the search area size should be set to twice the standard deviation of

the measurement noise, ((2<7<*) x (2<7r )).

C. TRACKING IN AN INHOMOGENEOUS MEDIUM

The next three Runs demonstrate the ability of the new MP tracking scheme

to compensate for the effects of ocean inhomogenuity. A reference case (Refcase)

was used to generate the TDOAs (the direct function table) used for simulation of

the "actual" medium. The precomputed direct function table generated using the

evaluated case (Evalcase) was used in the prefilter. The Evalcase represented the

assumed ocean conditions.

Run 8 demonstrates the effects of an IH medium (Refcase C2251) when straight

line propagation is assumed and used in the prefilter (Evalcase Sllll) . The results

are shown in Fig. 5.4. The large range tracking error of 3.3 km at a range of 10 km

clearly indicates the need for compensation for the medium inhomogenuity. A

relatively strong target signal (SNRo 70 dB) was used in order to isolate the IH

medium effects from the effects of the noise.

Run 9 examines the same scenario with a weaker target signal (SNRo = 50

dB) and its results are shown in Fig. 5.5. The TDOA measurements are noisy now

and give rise to a negative range bias which adds to the effect of the IH ocean. The

total resulting estimation error for this case is 4 km at the 10 km range.

The use of the new prefilter with the correctly assumed IH medium (Evalcase

C2251) is demonstrated in Run 10 and the results are shown in Fig 5.6. The

removal of the error associated with the IH medium is clearly evident. The error

in the depth channel after the depth maneuver at the 8
th minute is caused by

the fact that the C2251 grid was limited to a depth of +60m (due to the current

limitation of the SMART eigenray program discussed in Appendix F). This error
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Fig. 5.4. Run-8: Tracking in an IH medium.

is not present at shallower depths away from the grid edge or if the noise is smaller

as demonstrated by the near perfect tracking in Fig. 5.6 where SNRq of 70 dB

was used. This error can be removed completely if a full grid is employed. The

average number of solutions reached 1.8 in some cases since the corresponding

TDOA contour lines intersect in four closely located DR positions (see Fig. 3.17

which is taken from typical contours of the same case C2251). The effects of the

increased TDOA measurement noise are evident at the long range toward the end

of the run.

The overall tracking capability in an IH medium demonstrated by this run is

also shown in Fig. 5.6 as an XY plot. The estimated track (heavy line) approaches

the actual track (marked with dots) whereas the measurements are very noisy (the

fluctuating line).
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Fig. 5.5. Run-9: Effect of IH and TDOA noise.
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Fig. 5.6. Run- 10: Correction for medium inhomogenuity.
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D. EFFECTS OF ERRONEOUS SVP

The sensitivity of the IH MP inversion to errors resulting from an assumed

SVP which is different from the true SVP is examined in this section. A SVP with

positive surface gradient of 0.105 sec
-1 was used as the actual medium in Run

11 (Refcase A4261). A similar but slightly different SVP with a surface gradient

of 0.100 sec
-1 was used in the prefilter (Evalcase A3253). The results are shown

in Fig. 5.8. The range error is quite small for ranges less than 7 km. At ranges

greater than 8 km the TDOA resulting from the true SVP using the Refcase are

not covered by the direct function used by the prefilter. This again is not a limit

of the basic method but rather a result of the limitation of the current SMART

model which forced the grid selection (see Appendix F). For the region evaluated

here one can conclude that the method is insensitive to small errors in SVP. This

trend is expected to extend to longer ranges.

When large SVP errors are present, the resultant tracking error is also large.

This is demonstrated by Run 12 where a gradient of 0.105 sec
-1 was used in the

Refcase and a gradient of 0.05 sec
-1 was used as an Evalcase (C4261 and C2251

respectively). The results, shown on Fig. 5.9, indicate large tracking errors that

resemble the effect of the uncompensated IH medium demonstrated in Run 8. This

is expected since the SVP error in the assumed SVP in Run 12 is of the same order

of magnitude as the total uncompensated inhomogenuity in Run 8.
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Fig. 5.7. Run 10a: Correction for medium inhomogenuity, low noise.
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Fig. 5.8. Run- 11: Effect of small errors in SVP.
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E. SUMMARY OF SIMULATION RESULTS

The results of the complete system evaluation can be summarized as follows:

1. IH propagation introduces significant errors in MP tracking. The effect must

be compensated for in order to achieve accurate tracking.

2. The IH prefilter proposed here is functionally sound and can provide compen-

sation for the effects of the IH medium.

3. The DR grid used to compute the direct function should be chosen with care.

It should cover all possible target positions, with an additional margin to

enable handling of measurement noise. Too wide a grid, primarily along the

depth axis, adds ambiguous solutions and should be avoided.

4. As a general rule, the maximum search area size should be made larger than

twice the standard deviation of the depth and range measurement noise, i.e.,

area size > (2<7<*) x (2<rr).

5. The maneuvering target tracker can handle reduced effective sampling rates

resulting from inversion failures. The original sampling period was selected

here as 5 sec to match target dynamics and to provide a reasonable TDOA
observation time. Effective sampling rates which at times are reduced to as

low as 40% of the original rate can still support reasonable tracking.

6. The inversion is insensitive to small errors between the assumed SVP and the

actual one. (5-10% in the sound speed gradient)

7. The overall performance of the MP tracking degrades rapidly with increasing

range. This results from the vanishing TDOA at longer range and the rapid

increase in TDOA noise due to the attenuated target signal.

8. As a result of the growing noise at longer ranges, measurement biases develop

which tend to underestimate the range. Eventually the MP tracking filter fails

completely and losses track of the target. Reliable tracking can be expected

up to ranges of about 15 km.
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VI. CONCLUSION

This chapter concludes the thesis. It includes a brief review of the problem;

a short description of the solutions and a summary of the results. It ends with a

suggestion for further extension of the work.

Current acoustic broadband MP tracking techniques, which have evolved over

the last ten years, are based on straight line propagation. In reality the ocean

medium is inhomogeneous and the sound propagates along curved ray paths. MP

tracking therefore encounters large errors if the IH propagation is not accounted

for. Since there is no closed form relation between the TDOA and source depth and

range (DR) for the inhomogeneous case, the compensation for the inhomogeneity

is computationaly complex and until now had not been done.

Previous MP tracking algorithms have also assumed that the TDOA are al-

ways resolvable and associable with the corresponding path. In practical tracking

situations the TDOA are not always resolvable due to finite bandwidth of the re-

ceiver and association of TDOA with the corresponding path is very difficult. The

impact of these assumptions on MP tracking is significant.

In addition TDOA measurements are noisy. The SNR depends on the strength

of the received signal which in turn depends on range due to the propagation loss.

A realistic overall evaluation of a MP tracking system requires a more accurate

model for the noise than those previously used, as well as a simulation of the IH

medium effects.

Current MP tracking algorithms employ the multiple model (MM) estimation

technique. This technique produces tracking biases since the multiple models are

in most cases not centered around a true model of the target.
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This work focused on developing a model that accounts for the IH propagation

and the effects of realistic TDOA processing. A key contribution of this work is the

development of an algorithm to compute depth and range from TDOAs produced

by MP in an IH medium. In our approach the TDOAs are assumed to be estimated

by realistic instrumentation and thus have limited resolution and are not assumed

to be associable with their corresponding path.

The performance of the model is evaluated using a accurate range dependent

model for the noise. The depth range calculation is performed with the help of an

eigenray program exercised over a DR grid. The realistic TDOAs are numerically

computed offline and stored in a direct function table. The measured TDOAs

are then used online to produce the corresponding DR using linear interpolation.

The method accounts for any multipath structure and is not dependent on the

association of the TDOA with the multipath.

The interpolation is performed as follows. The DR and TDOA values of three

points in the direct function table that have TDOA values close to the measured

set, are used in the interpolation. The triangle of the three closest points in the

direct function table is located by means of a unique search algorithm called the

local search. The search is limited to a small area centered around the predicted

target position in order to improve the efficiency and reduce the ambiguity.

A technique for centering the MM hypotheses bank around the estimated

target maneuver command to reduce the tracking bias was also developed. The

entire model is shifted in a manner that requires no computation. It is based on an

analytically derived linear relation between the command hypothesis bank and the

states of the corresponding models. A second order smoother instead of the first

order one previously used eliminates the lag error encountered in earlier tracking
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designs. An evaluation of the performance of the new MP tracking scheme in

shallow waters using a realistic model for the noise shows very good results.

A comprehensive set of test cases were run to evaluate the components of

the MP tracker both individually and as a total system. The main results of the

simulation show that:

1. Significant errors are introduced in MP tracking by the ocean IH acoustic

medium.

2. The new MP inversion method and the tracking technique can compensate for

the IH medium effects.

3. The effects of limited delay resolution and lack ofTDOA and path associability

are also accounted for by the new method.

4. The depth measurement is more affected by the ambiguity resulting from the

lack of TDOA path associability than the range measurement.

5. Realistic noise limits the performance of shallow water MP tracking to short

ranges (say less than 15 km). The noise initially introduces estimation biases

and eventually leads to a complete loss of track.

5. At short ranges the method is insensitive to small errors in SVP. The method
is more sensitive to errors in ocean bottom depth. Large errors in SVP or

bottom depth introduce large MP measurement errors.

7. Recentering the MM around the estimated maneuver command and the use

of the second order smoother significantly reduces tracker estimation bias.

8. The coordinate decoupling technique currently used in MP tracking introduces

tracking errors for nonmaneuvering targets around the CPA at short ranges.

9. A second order target model is sufficient for maneuvering target tracking if

the Kalman gain is properly trimmed.

There are several directions in which this work can be extended. However the

following specific direction is a natural extension of the ideas and offers potential

improvement of the results derived here.
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Use of more than the first two TDOAs has the potential of reducing the depth

and range estimation noise. More importantly use of additional TDOAs will reduce

the ambiguity in target position. If, in addition, information on the reflections is

available* and the signal spectrum is known then the complete ACF of the received

signal can be constructed for every point in the grid. A classification method could

then be set up to measure the closeness of the measured ACF to those constructed

for the points in the grid. The conditional probabilities of the target position for

any of the DR grid points can be generated by the MM tracker and incorporated

into the classifier. Interpolation between the closer DR points can then be used to

compute the target position.

In summary, this research investigated the influence of realistic conditions on

the multipath tracking of maneuvering targets. The inhomogeneity of the acoustic

ocean medium; the limitations of TDOA estimation; and the difficulty in associa-

tion of TDOA with multipath all have a significant effect on the tracking. A new

model was devised to counter these effects. A very thorough evaluation of the model

was conducted with a special emphasis on the reality of the simulated condition.

The results indicate that in general the MP tracking is limited to short ranges.

Accurate tracking can only be achieved if the distorting effects of the medium and

the delay estimation are compensated for as was successfully done here.

* Such as when operating in a well known and previously measured area

of the ocean
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APPENDIX A

TRANSITION MATRICES

A separate model of the form

xn = ^x„_j + run- t + «w„_ 1 (A.1)

is used to describe target motion along the X, Y or range R axis. The components

of the matrices appearing in this equation are given below.

n=l

^31 = ^32 =

(1 - e'°T
)
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„-ctT

¥*21

^22 — c

we
-°T _ ae-a„T) /{a
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These parameters are easily derived from Eq. 2.3.3 in Ref. 6 by the change of

variables

Un «-> ~Uk
a

Wn ~—Wk
ata

(A.2)

(A3)
w

and

aw = a. (AA)

The advantage of the scaling used here is that both U and W are now in [m/sec], for

example a constant process noise W or command U of 1 [m/sec] in the X direction

would each yield x = 1 [m/sec] at the steady state.

For the cross range channel the equation is

B = (j> b Bn_! + T bUb + *6Wn-l

where the components of the matrices are expressed

in terms of the previous models components as

^621 = ^631 = ^632 =

^612 = ^12

^622 = ^22

^631 = 4>S\/R

(A5)

^632

^633

Tbl

r62

^32 /R

<^33

Tl/R

T2 /R
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r63 =o

*>i=*iAR

*>2 = *2/R

* 63 = *2/R

These results derive from Eq. 2.3.28 in Ref. 6 with the change of variables Eq.

(A.2)-(A.4).
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APPENDIX B

CONDITIONAL MEAN ESTIMATE

A constant U is to be estimated from the observation z = U 4- n where

n ~ iV(0, a2 ). The optimal mean square estimate is the conditional mean U = E{U\z}.

Two equiprobable hypotheses U\ , U2 are assumed, which span the range of the ex-

pected U. The estimate is thus given by

V = E{U\z} mj^U,.W \z) = J2Vt
-
MUi

). PSH {B.l)

-1 t=l /(*)

where f(z) is the density function.

With P{U\) = P(U2) = 1/2 and the given normal distribution of the noise

the estimate U is given by:

»2 /o_2

U =
1 V2n<r * V27T<r

-1 . e-(z-(/i)
2 /2<r 2

. 1 r(z-l/2 )V2<r 2

V2tt<7 \/2Tr<T

(B.2)

which after some algebra is:

U = *1 + *2
1 .(_ e -[-2z([/2 -C/ 1 )-(f/2 -f/1 )(t/2 -t/ 1 )]/2 -2 ^l + e

_ e [2z(l/2 -t7 l )-(C/2 -C/i)(C/j+ t/ 1 )]

'

(5.3)

If we let

tf, = ^2 - Ui; Uc = (U, + ?72 )/2; (J3.4)

an(

a = §(z - Uc ) (B.5)

then we obtain

£_ _J7i_ t/2 ^e-^^e^+e-^/^+^e^^e-^+e- /2
)

1 -(- e° 1 + e~a
(
ea/2 +e-a/2)

(5.6)

198



www.manaraa.com

which after substitution of Eq. (B.4) becomes

fr (g. - U,/2)e-°'* + (Uc + U,/2)e°'2 TT ,
V. e°l2 - e~<»'2 V. . ,a

U "
(e«/2 + e-«/2)

= f'+i' t./' + r«/»
= ^+y tanh

i'

(B.7)

After substitution of Eq. (B.5) the result is

0.l7. + £ta»|»|5j.(,-jr.) (J5.7)
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APPENDIX C

COMMAND UPDATE TRANSIENT

In this appendix the transient in command estimate as a result from a com-

mand bank update is computed. The transient is defined as

a a

Utransient = Uk+ — Uk- (C.l)

and is given by

Utransient = UI
fc
- • W k - - UI fc+ •Wfc+ .

The transient is the result of the command bank update given by

test)

UIjfc+ = Uljfc- + N • AU. (C.3)

Examining Fig.2.8 one realizes that for i = 2 to n

(Pi)k- (Wh- =(Ui-i)k+ • W-i)*+. (C.4)

Applying the above to Eq. (C.2) cancelling terms and recalling that (W\
) k - = (W^) k +

results in

But since

U, r.n.i.nt=(UN )k+-(WN )k+ -(Ul )k- (Wi)»-

(UN )k + = (Ut)k - + N AU

(C.5)

(C.6)

then

Utr*nMient=N.AU-(W1 ) k
-. {CI)

For an update in the opposite direction one gets with the same arguments

Utran,< C nt = -N-AU-(WN ) k
- (C.8)
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APPENDIX D

DELAY ESTIMATION ERRORS

The transformation of the acoustic noise to a biased range dependent delay

noise by the time delay estimator is considered here. This noise modeling was

done in order to provide a more accurate simulation than previous MP tracking

simulations.

A. VARIANCE DEPENDENCE ON SNR

The minimum error variance in estimation of a variable from a measurement

with zero mean random noise is given by the Cramer Rao lower bound (CRLB).

The bound has been applied to TDOA estimation. Ianniello [Ref 14] gives a cur-

rent and relevant review of time delay estimation error. The performance of an

autocorrelator time delay estimator is evaluated there both analytically and exper-

imentally.

Iannoello shows that if the x(t) signal and the noise n(t) both have uniform

spectral density in the band - B Hz and are zero outside of that range, then the

variance of the autocorrelation estimate of r from the single multipath signal

y(t) = x(t) + ax(t - t) + n(t) (D.I)

where a is the relative attenuation (gain) of the path is given by

'(1 + a2)
2

+ a2l S2
g + 2(1 + a2

)5s -NB +N2
B

,2 Jl LGT =<7
a2 S2

(D.2)

2 1 3
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where S and N are the spectral densities of the signal and the noise in the

baseband — B and T is the observation time. For the special case of a = 1 the

variance reduces to

"I = °l '^T ' [5 + 4 SNR_1 + SNR
"
2] {DA)

which has three dominant regions depending on the signal to noise ratio

SNR = S/N. (D.5)

For SNR >> 1 the variance approaches a constant indicating the performance limit

of this type of estimator.

For SNR << 1 the error variance is inversely proportional to the second squared

SNR. In between these two regions there is a transition from constant to dependence

on SNR-2

In his paper Ianniello indicates close agreement of Eq. (D.2) both with sim-

ulation results and with the CRLB for the typical case of SNR << 1 encountered

in practice.

B. VARIANCE DEPENDENCE ON RANGE

For a stationary acoustic noise with bandlimited spectral density NB and signal

intensity given by Eq. (3.3) the SNR at the input of the delay estimator becomes

range dependent and is given by

SNR(fl) = SNR • Rp (D.l)

where SNR is the SNR at range R = 1 [m].
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Two models were used here to represent the range dependence of the noise.

The first* was a simple dependence on some power p of range within a constant of

proportionality <r selected to match realistic noise at ranges 5 < R < 15 km.

a = (7 • Rp (D.S)

This model was used to develop the general trend of the inversion and the tracker

when the noise is range dependent. The second noise model* was based on the

exact Eq. (D.2) with SNR being the function of range given in Eq. (D.6). Some

examples of the STD of TDOA as function of range for typical values of SNR •src

shown in Fig. D.l and D.2.

C. DELAY ESTIMATION BIAS

Two of the sources contributing to MP bias errors are associated with the

delay estimation. These axe the nonnegative character of the delay estimate and

the effect of close ACF peaks. These are discussed next.

The symmetry of the autocorrelation function, namely

ACF(t) = ACF(-t) (D.9)

prevents the discrimination between positive and a negative time delay (a lagging

versus a leading replica). Since in the multipath situation, there really is a first

arrival followed by lagging replicas, the use of the positive part of the time lag axis is

conceptually justified. This however implies that the error in time delay estimation

is not a simple gaussian, but rather reflects around the r = 0. A distribution which

is equal to for negative time delays, is used here to describe the estimate r. An

* Noise type (NT) one.

* NT two
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Fig. D.l. Range dependent TDOA noise type 2 (low).
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Fig. D.2. Range dependent TDOA noise type 2 (high).
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estimate r. An estimate with this distribution is generated by taking the absolute

value of the sum of the time delay and a normal zero mean noise.

When the actual time delay is large relative to the estimation error variance,

the effect of reflection around the lag is marginal. When the actual delay is small

compared to the error variance the resulting error bias has a stronger effect.

Figure D.3 shows three distributions of the process

t= \t + n\ (P.10)

for t taking the value of 1.8(7,0.85(7,0.22(7 where n ~ N(0, a2
). It is evident that

when t is smaller than 0.5(7 it will be significantly overestimated which will cause

an underestimated range.
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Fig. D.3. Nonnegative bias.
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D. CLOSE ACF PEAKS

When the actual delays are short compared to the signal correlation time (1/B)

the presence of an adjacent peak will shift the location of the estimated peak. This

shift can be either positive or negative depending on the specific set of MP and

resulting ACF. Since it is analytically predictable it can conceptually be corrected

for as is done in the maximum likelihood estimator [14]. This error was therefore

not simulated here.
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APPENDIX E

DETAILED DATA DEFINITION AND SELECTION

This appendix describes in detail the parameters used in the various simula-

tions and evaluations. Run data parameters are described in Section A. The values

selected for the 10 simulation Runs are listed in Section B. Section C describes the

case code name.

A. SIMULATION RUN DATA

Target and Scenario Data

Ad - [sec] The target's depth time constant (l/a^ in Eq. (2.5).

Ar - [sec] The target's horizontal time constant (l/at in Eq. (2.2).

Pin - The pilot number 1, 2 or 3 per Chapter Two, Section E.

Medium and Prefilter

Case - A selection of parameters defining the ocean medium
and its acoustic modeling.

Mdn - Medium number 1 through 4.

Pfn - Prefilter number 1 through 6.

p - [number] Power of the range dependence of the

delay estimation variance (See Chapter Two,
Section D.4, Chapter Three, Section A, and Appendix D.)

Pj,
- [number] Power of range dependence of bearing

estimation noise, (and of DR noise when it is

used with medium and prefilter number 1, Eq. (2.101)).
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Two cases were used for each Run.

Refcase

Evalcase -

NT

tfu

C*2

Bw

Atn

SNR

The reference is a set of parameters considered as

the "actual" conditions used by the medium
program to convert the actual DR position to TDOA.

The evaluated ocean conditions and used by

the prefilter in the inversion of TDOA to DR.

Noise type 1 = the simplified model Eq. (2.96).

2 = the improved model, Appendix D.

[ms] Standard deviation of TDOA
t\ (or Tj ) estimate at range of 500 m. This parameter

is was used only by noise model

type 1, but is computed for noise model

type 2 for reference as well.

Same as above but for <2(r2)-

[m] Depth error standard deviation at range of

500 m, used with medium 1 and prefilter 1.

[m] Range error standard deviation at range of

500 m, used with medium 1 and prefilter 1.

[deg] Bearing standard deviation at range of 500 m.

[Hz] Receiver bandwidth.

[dB] A vector of surface and bottom bounce losses.

[dB] Signal to noise ratio for target at range of 1 m.

measured at the input to the delay estimator.

MM Parameters

Ord

[sec] System sampling time interval.

MM target model order, 2 or 3.

Aq [sec] Command noise coloring time constant (l/aw Eq. (2.7)).
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Umi n - [m/sec] Lowest speed command in the hypothesis bank.

Umax - [m/sec] Highest speed command in the hypothesis bank.

N - Number of filters in the MM.

Pr - Command transition probability to 1.

Anl - W averaging constant, (iterations to reach 63%) Eq. (2.23b).

An3 - Wop ,?7 p averaging constant, (iterations to reach 63%)
Eq. (2.26) and (2.27)

An4 - Xop averaging constant, (iterations to reach 63%)
Eq. (2.28)

An - Uc averaging constant, (iterations to reach 63%)
Eq. (2.88)

B. Runs

The specific values of the parameters for each run are given below:

Run - 1

Target and scenario data

Ad - 35 sec.

Ar - 40 sec.

Pin - 3

Mdn _ 1

Pfn - 1

Pb - 1

°d - l[m]

Or - 50 [m]

°b - 1 [deg]

MM parameters

T 5 [sec]

ord - 3
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Aw - 25 [sec]

Umin - —30 [m/sec]

Umax - +30 [m/sec]

N - 11

Pr - 0.9

Anl - 10

An3 - 4

AnA - 5

An9 - 100

Run - 2 (All parameters are the same as for Run 1

except the following:)

Pin - 3

Mdn - 3

Pfh - 3

Refcase - Sllll

Evalcase - Sllll

NT - 2

P - 1

Pb - 1

<*t\ - 0.005 [m]

<*n - 0.004 [m]

Ob - 0.08 [deg]

Bw - 2000 [Hz]

Atn - 5.5 [dB]

SNR - 50 [dB]

Run - 3 (all the parameters are the same as for Run 2

except the following:)

p
crti - 0.05 [ms]

(T t2 - 0.05 [ms]

SNR - 70 [dB]

'

Run - 4 (All parameters are the same as Run 2 except

for the following:)

P - 2

a t i
- 0.06 [ms]
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<jt2
- 0.08 [ms]

SNR - 60 [dB]

Run - 5 (All parameters axe the same as for Run 2

except the following:)

p - 2

°t\ - 0.018 [ms]

<Tt2 - 0.03 [ms]

Atn - 5.10 [dB]

Run - 6 (All parameters axe the same as Rim 2

except for the following:)

Pin - 1

Mdn - 4

Pfn - 5

P - 2

Pb - 1

<?tl - 0.018 [ms]

<Tt2 - 0.018 [ms]

max axea size - 8x15
Atn - 5.5 [dB]

SNR - 50 [dB]

Run - 7 (All parameters axe the same as Run 6

except for the following:)

max axea size - 5x9

Run 8 (All pax

except for

Refcase - C2251

Evalcase - sun
NT - 2

P - 2

Pb - 2

ffti - 0.005 [ms]

ai2 - 0.005 [ms]

8 (All parameters axe the same as Run 6
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Atn

SNR

Run

Atn

SNR

Run

Refcase

Evalcase

Run

Refcase

Evalcase

Run

55 [dB]

70 [dB]

9 (All parameters are the same as in Run 8

except for the following:)

5.10 [dB]

50 [dB]

10 (All parameters are the same as in Run 9

except for the following:)

C2251

C2251

11 (All parameters are the same as in Run 10

except for the following:)

A426

A3253

12 (All parameters are the same as in Run 11

except for the following:)

Refcase - C4261

Evalcase - C2251

<*t\ - 0.005 [ms]

<Tt2 - 0.005 [ms]

Atn - 5.5 [dB]

SNR - 70 [dB]

C. Case Definition

A case code is comprised of one character and four digits, (for example C2461).

It was used to define the basic MP assumptions. These include homogeneous versus

IH propagation, the ocean conditions, the estimation resolution, The DR grid data

and some additional parameters. The code is used in the computation of TDOA

surfaces over the depth range (DR) grid.
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The parameters are defined as follows. The leading character indicates the

type of case.

U - Homogeneous propagation, perfectly resolvable and identifiable MP. This

is an idealized case where Eq. (1.2) is used to compute the unsorted (hence the U)

time delays t\T2. It is used mainly for methodology purposes, demonstrating the

differences between the TDOA and modified TDOA.

S - Homogeneous propagation, perfectly resolvable but non identifiable paths.

Eq. (1.2) is again used to generate the time delays which are then sorted according

to delay magnitude (hence the S) at each DR point and denoted by ti and £2

.

The variable t\ is now always the shortest, but it can no longer be associated with

surface reflection nor can the longer <2 be associated with the bottom bounce. This

case is useful as an idealized reference for the later IH limited resolution since they

are conceptually similar.

A,B,C,D - The realistic IH limited resolution non identifiable cases. The letter

indicates the receiver time delay resolution in milliseconds as follows.

A

B

0.05

0.2

C

D

0.5

1.0

The four digits define the parameters required for the numerical generation of

the TDOA surfaces as follows. The first digit indicates the SVP. Four SVP's of

varying inhomogenuity are used throughout this research as shown below:

case 1 st digit \, 2. 3. 4.

00

500

W

_C (m/scc)

%--° 3
80,5
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The SVP digit is of course meaningless for the S and U cases where homoge-

neous propagation (SVP digit = 1) is always assumed.

The second digit details the observer and ocean depth information.

TABLE E.l

DEPTH DATA

case 2nd digit 1 2

Ocean depth m 503 513

Observer depth 162 162

518

162

550

162

The third and fourth digits describe the discrete depth and range grid used

for the direct function table.

TABLE E.2

GRIP DATA

Grid density 1 2 3 4 5

Initial depth [m] 160 — 160 160 160

Depth Step size [m] -50 25 -100 10

Number of steps 11 21 6 11

Initial range [m] 500 500 500 500 500

Range step size [m] 500 1000 500 1000 250

number of steps 25 25 49 13 99

215



www.manaraa.com

APPENDIX F

THE EIGENRAY ACOUSTIC MODEL

This appendix describes the selection of the eigenray model and the evaluation

of the SMART model.

A. REQUIREMENTS AND MODEL SELECTION

The general goal of the eigenray model is to find and trace all the rays passing

through the twc s^cified receiver and source end points. The following is required

from an eigenray model if it is to be used for MP tracking.

1. Correctness and High Accuracy

The total sound travel time from the source to the receiver may be of

the order of a few tens of seconds. The milliseconds of travel time difference,

while vital for the MP ranging, are a very small percent of the total travel time.

This is especially true for the longer ranges where the travel time grows while the

differences decrease. The resulting output accuracy requirement is of the order of

.001% which dictates even higher precision in the model's internal computations.

The issue of correctness relates to the possibilities of not finding an existing path

or producing imaginary nonexisting paths; it too is related to the computer word

length.

2. Compactness

The eventual use of a MP tracking algorithm in a real time systems appli-

cation imposes additional constraints on run time, supporting hardware, and size

of the model. Research oriented programs requiring extra long computer words or

computation time will not fit the smaller data processors usually available for
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target tracking in onboard systems. What is required is a program running on a

microcomputer that can solve a typical eigenray problem in a matter of seconds.

B. MODEL SELECTION

Some eigenray models were developed in recent years, but the conflicting re-

quirements of accuracy and compactness, narrows the selection to two programs.

One model called SMART, for SMall Acoustic Ray Tracer was developed by Novick

of Mission Sciences Corp. [Ref. 22]; the other is a research tool developed by Spies-

berger as an application of an earlier model [Ref. 31].

The SMART model was selected because it was better integrated as a working

model and provided more detailed output data. The Spiesberger model has is the

advantage that it can account for a sloped ocean bottom. However this model lacks

a reliable transmission loss output and is not well integrated for the intended use

here.

The eigenray model is used in a fashion that is separable from the rest of the

MP inversion or target tracking algorithm. This provides for easy replacement or

upgrading of the model. This also led to our decision to use the more reliable

integrated model for this first IH compensation attempt, and maintain the option

to upgrade and extend it in the future.

The SMART model was evaluated extensively and the main result of this

evaluation is presented in Section D.

C. SMART MODEL - A BRIEF DESCRIPTION

Finding the eigenrays is the first task accomplished by the model. Source and

receiver depths are set to the specified input parameters and an iterative search
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for the initial angle of the ray which will reach the receiver depth at the specified

range, is conducted. The interval of possible ray angles is divided into sectors for

which the dependence of range on the angle is a continuous well-behaved monotonic

function.

Eigenrays axe searched for in every sector that spans the desired range by

successive approximation, the procedure terminates when the eigenray reaches a

specified range accuracy. Only rays with a total number of bounces less than a

specified input value are considered. Forward ray tracing equations similar to those

presented in Chapter Three are used to locate the limits of the angle sector, to try

out angles in the search process, and to compute the detailed output for every

eigenray found.

D. LIMITATION OF THE MODEL

The program does not find eigenrays that are within ±0.15 deg from the

horizontal. This is partially caused by the limitation of intensity computation at

these angles (recall discussion in Chapter 3 and Eq. (3.20)). Another cause for

the limit is the finite computer word length and the increment used for searching

the ray around the horizontal direction. The ±0.15° limitation relates to both

angle at the source and at the receiver. An example of the problem is shown in

Fig F.l. The bounce count (BC) of case Cllll* computed using SMART shows

a high value along the receiver depth at long range. No loss of a path or loss of

resolution should give rise to this phenomena.** The unexpected BC was traced

* See Appendix E for case definition.

** Near the surface and the bottom the corresponding single bounce is not

resolvable from the direct path. At depth of —170 m the single surface and
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of the eigenray model to detect the direct path. This results from the direct ray-

being close to horizontal at those ranges. (The vertical separation between the

grid depth line at 152 m and receiver at 162 m is 10 m.) These limitations were

brought to the attention of the author of the SMART model and are currently

being corrected. Since the model is employed in the prefilter in a modular way,

these limitations do not effect the generality of the proposed inversion procedure.

The choice of The SVP and geometry selected for use in this work was de-

signed to avoid this problem by limiting the grid to a region were the rays are not

horizontal at all. This was done by (1) restricting the DR grid to +60 - +160 m

while the receiver was placed at 162 m; (2) limit the maximum range to 25 km;

and (3) restricts the SVP gradients to positive surface gradients only. The overall

geometry is shown in Fig. F.2.

bottom bounce are not resolvable.
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Fig. F.l. Bounce count with missing horizontal rays.

100

Fig. F.2. Grid without horizontal rays.
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APPENDIX G

THE LOCAL SEARCH ALGORITHM

In this Appendix the component of the local search algorithm, the inversion

test, the inward search and the outward search, are described. A pseudo code

description of the algorithm is also included. The input and output parameters

used by the algorithm are defined in Chapter Three.

A Numerical analysis procedure, developed for finding zeros of complex func-

tions [Ref. 29] was modified to apply to the search. For this purpose the search has

to be viewed in the context of the graphical statement of the problem as discussed

in Chapter Three, that is, as finding the DR coordinates of the point of intersection

of the constant t\ and £2 contours (see Fig. 3.12). The inversion problem

can be rewritten as

*)-'-'0;)=e)
(G2)

Where the D and R are the unknowns. If the vector function / is written as two

separate functions /j and /j Eq. (G.2)can be written as the two equations

r-l I *lD ~ fr UJ =0 (G *3a)

r-l / kR-fc'^tJ^O (G.36)

The contour lines of Fig. 3.12 represent loci of the DR solution of Eq. (G.3).

Every point p on the DR grid with depth Dp and range Rp can be defined in terms
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of it's relation to the input t x contour by a one digit number Cp \ given by

( l ft, > *i

Cpl = I ; tlp = t, (G.4)

U ; *iP < *i

and in terms of the it's relation to the second input contour t2 by another digit

Cp2 given by
( 1 ;t2p >t2

Cp2 = \0 -Mp = 22 (G.5)

I -1 ;r2p < t2

Cp i and CP2 are referred to as characteristic digits. An example of the two char-

acteristic digits for some points is shown on Fig. G.l.

A. THE INVERSION TEST

A 1 x 1 rectangle can contain a solution only if its characteristic digits Cp \

and CP2 are either zero or if they acquire at least two different values in one of the

four rectangle corners.

Some examples are shown in Fig. G.l(c). In (a) both Cp \ and Cp2 are 1 and

— 1 at different points. In (b) Cp \ is and 1, while Cp2 is 1 and —1. This rule is a

simplified version of a rule analytically derived in Ref [29] from Cauchy's principal

value argument.

Note that this simple test is a necessary but not a sufficient condition. Fig. G.lc

shows an example of a rectangle which succeeds the test but does not contain a

solution. If this simple conditional test succeeds it is followed by a second more

rigorous test which checks to see if the two contours actually intersect or just pass

through the rectangle. This is done by actually attempting to locate the solution,

by means of the inward search described later.
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-1. 1

1.-1 I. -1 1.-1

cp ep
1 2

Fig. G.l. Examples of characteristic digits.
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B. THE OUTWARD SEARCH

The outward search is a recursive procedure. It performs the inward search

over successively growing search rectangles. If a call to the inward search returns

in a failure (no solutions in the current rectangle) the search area is increased by

tripling the sides of the current rectangle. A new current rectangle is thus formed

centered around the previous one with an area nine times larger. The outward

search is now called recursively to search the new rectangle. Again it tests for

existence of a solution by calling the inward search. Note that in its growth the

outward search may in one step include two or more solutions which would then

all be located by the inward search.

The search rectangle area is increased by a 9:1 ratio by means of tripling the

length of both its sides. This is done in order to minimize the duplicated effort

associated with re- examining the original rectangle as part of the recursive search

of the new rectangle. However the rectangle is increased only up to the portion

of the maximum search area size that still remains within the limits of the grid.

If the inward search for the current rectangle is unsuccessful and the search area

cannot be further increased in any direction, the procedure terminates in a failure,

without any solution.

Upon termination the search procedure outputs the size of the current area,

the number of solutions found and the solution quad triangles. If more than one

solution is found the calling inversion procedure "nil select the most likely one, i.e.,

the one closer to the predicted position after the interpolation is performed. An

example of the growing search rectangles is shown on Fig. 3.18 in the dashed line.

The search is initiated at point Dp , -Rp , and the existence of solution is detected

after two iterations.
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C. THE INWARD SEARCH

The inward search attempts to locate a solution in a given input rectangular

search area. It starts by performing the conditional inversion test on the complete

area. If the test succeeds, the region is divided into four (quadrant) rectangles

by halving both of its axes. Each quadrant is then searched for solutions by a

recursive call to the inward search*. If the possible existence of a solution in the

quadrant is indicated by the inversion test the quadrant is subdivided and the

process continues recursively. If the test of the quadrant fails, the search in it

terminates. The inward recursion thus terminates when either the search area

reaches the minimum rectangle (of size 1 X 1), or if no solution exists in the a

specific branch (of the B tree with branching factor 4).

The triangle(s) in the lxl rectangle is (are) found by dividing the rectangle

into it's two DR grid triangles and performing a test on each to see if it surrounds

the point. The surrounding test uses vector product to verify that the input t\ , ti

point is on the same side of all lines that make the sides of the triangle. The test is

as follows: Three vectors Si, 52 and 53 are defined in the ti<2 plane els the three

sides of the triangle in a cyclic order (see Fig. G.2). Three corresponding vectors

Fi , V2 and V3 are formed by the input t\ and £2 point and the three angles of the

triangle Ai, -4.2,-4.3 respectively. The side of the input point relative to a "side

vector" 5 is given by the sign of the vector product of the corresponding vectors

5 and V vectors. An input point inside a triangle will be on the same side of all

the three side vectors. That is

sign [Vi x Si] = sign [V2 x 52 ]
= sign [V3 53 ]

(G.6)

The search is therefore a B tree search with a branching factor of 4.
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Fig. G.2. Vectors for inside test.
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In Fig. G.2 the six vectors are plotted for a point inside (pi and full line) and for

a point outside (p2 and dashed lines) a triangle. The signs marked along the V

vectors are the signs of the corresponding vector product (V^ x Si).

The solutions from all the branches of the recursion are reported by the inward

search. This ensures that all solutions found in the searched area centered around

the reference point are reported for further consideration. In the example shown

in Fig. 3.18 three iterations of the inward search are required to locate the actual

triangles that surround the point. In this case there were two solutions.

Pseudo code of the local search algorithm follows.
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D. PSEUDO CODE FOR THE LSA

TYPE box : a square area in the depth range grid defined by

the DR indexes.

FUNCTION inside ( tl, t2 ,tri) : boolean;

inside :- 1 if the point tl,t2 is inside the triangle defined

by the three quads of tri on the tlt2 plane;

otherewize.

FUNCTION close ( INVAR: depth, range) : box

close :- the i j (depth range ) indexes of the quad bcx on

the depth range grid surrounding the input

depth range point.

ENDFUNCTION;

PROCEDURE inversion_test ( INVAR : tl, t2, current;

OUTVAR : result )

IF

(CP1 equals or changes sign in the current area)

AND (CP2 equals or changes sign in the current area)

THEN result :-l ELSE result :- 0;

PROCEDURE owtward ( INVAR : tl, t2 , current , maxsize;

OUTVAR :Qlist, number_of_solutions , areasize)

BEGIN

IF current = previous THEN exit ;reached the size limit.

ELSE

BEGIN

inward ( tl, t2 , current
,
qlist, num_of_solutions)

;
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IF number_of_solutions =/= THEN exit; Solution found

Else

BEGIN ; Recourse

.

current :- triplsized (current),

outward (tl , t2 , current , num_of_solution, areasize)

END;

ENDIF;

END;

ENDIF;

ENDPROCEDURE

.

PROCEDURE inward (INVAR : tl,t2, current

OUTVAR : qlist, num_of_solutions)

;

BEGIN

IF current =1x1 THEN

split current box into triangles tril, tri2

;

FOR tri IN (tril, tri2) DO

IF inside (tl,t2,tri) THEN

add tri to qlist;

num_of_solutions: - num_of_solutions+l

;

ENDIF;

ENDFOR;

qlist :- empty;

num_of_solution :- 0;

IF not(inversion_test(tl, t2, current)) THEN exit

ELSE

ELSE
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split current into four quadrants 1 thru 4;

FOR next IN quadrants 1 through 4 DO

inward ( tl,t2 , next, list , num)

;

qlist :- qlist + list;

num_of_solution :- num_of_solution + 1;

ENDFOR;

ENDIF;

ENDIF;

ENDPROCEDURE

.

PROCEDURE inversion ( INVAR :tl, t2, DRref ,maxsize

OUTVAR : depth, range, aver_num,aver_areasize)

var current : box;
solutionlist : list of depth range solutions;
BEGIN
current :- close ( DR refpoint)

;

outward ( tl,t2, current, qlist, num_of_solutions,areasize)

;

IF num_of_solution = THEN depth, range :- DRref ;a failure
ELSE
BEGIN
aver_num :- average_nun x a + num_of_solutions x (1-a)

;

aver_areasize :- aver_areasize x a + areasize x (1 - a)

;

FOR tri IN qlist DO

interpolate depth range using tri;

append solution to solution list;

ENDFOR;

ENDIF;

select depth range solution closest to DRref point as depth

range values to output.

ENDPROCEDURE.
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